

CellAdvisorTM
JD780A Series FW3.080
User's Manual

CellAdvisor JD780A Series FW3.080

User's Manual

JD785A Base Station Analyzer JD786A RF Analyzer JD788A Signal Analyzer

Notice

Every effort was made to ensure that the information in this manual was accurate at the time of release. However, information is subject to change without notice, and JDS Uniphase reserves the right to provide an addendum to this manual with information not available at the time that this manual was created.

Copyright/Trademarks

© Copyright 2017 Viavi Solutions Inc. All rights reserved. No part of this guide may be reproduced or transmitted, electronically or otherwise, without written permission of the publisher. Viavi Solutions, the Viavi logo, CellAdvisor, RANAdvisor TrueSite, StrataSync, and EZ-Cal are trademarks of Viavi Solutions Inc. ("Viavi"). All trademarks and registered trademarks are the property of their respective companies.

Google Maps and Google Earth are either trademarks or registered trademarks of Google in the United States and/or other countries.

Bluetooth is a trademark or a registered trademark of Bluetooth Special Interest Group (SIG) Inc. in the United States and/or other countries.

Android is a trademark or a registered trademark of Google in the United States and/or other countries.

iOS is a trademark or a registered trademark of Apple Inc. in the United States and/or other countries.

Windows and Windows 7 are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries.

Copyright release

Reproduction and distribution of this guide is authorized for US Government purposes only.

Ordering information

This document is a product of Viavi's Technical Publications Department, issued as part of the JD780A Series. The catalog number for a published manual is JD780A362 - printed. The catalog number for an electronic manual on CD-ROM is JD780A361 - electronic.

Open source disclaimer - IMPORTANT READ CAREFULLY

The JD780A Series includes third party software licensed under the terms of separate open source software licenses. By using this software, you agree to comply with the terms and conditions of the applicable open source software licenses. Software originated by Viavi is not subject to third party licenses. Terms of the Viavi Software License different from applicable third party licenses are offered by Viavi alone.

This product incorporates open source software entitled "zlib". The zlib is the

compression library written by Jean-loup Gailly and Mark Adler, who granted permission to use this software for any purpose, including commercial applications.

This product includes open source software developed by the Apache Software Foundation (http://www.apache.org/).

This product used free library for JPEG image compression written and distributed by Independent JPEG Group or IJG (http://www.ijg.org/).

This product used free, open-source JavaScript library entitled "jQuery". It is licensed under the MIT License (http://jquery.org/license/).

See "Viewing OSS license" on page 42 for more information.

Terms and conditions

Specifications, terms, and conditions are subject to change without notice. The provision of hardware, services, and/or software is subject to Viavi's standard terms and conditions, available at www.viavisolutions.com/en/terms-and-conditions.

EMC directive compliance

This product was tested and conforms to the EMC Directive, 2004/108/EC and its amending directives for electromagnetic compatibility. Conformity with this directive is based upon compliance with the harmonized European standards: EN61326-1, CISPR11, EN61000-3-2, and EN61000-3-3. A copy of the Declaration of Conformity is provided upon your request.

Low voltage directive compliance

This product was tested and conforms to the Low Voltage Directive, 2006/95/EC and its amending directives. Conformity with this directive is based upon compliance with the harmonized European standard EN61010-1. A copy of the Declaration of Conformity is provided upon your request.

WEEE and battery directive compliance

Viavi has established processes in compliance with the Waste Electrical and Electronic Equipment (WEEE) Directive, 2002/96/EC, and the Battery Directive, 2006/66/EC.

This product, and the batteries used to power the product, should not be disposed of as unsorted municipal waste and should be collected separately and disposed of according to your national regulations. In the European Union, all equipment and batteries purchased from Viavi after 2005-08-13 can be returned for disposal at the end of its useful life. Viavi will ensure that all waste equipment and batteries returned are reused, recycled, or disposed of in an environmentally friendly manner, and in compliance with all applicable national and international waste legislation.

It is the responsibility of the equipment owner to return equipment and batteries to

Viavi for appropriate disposal. If the equipment or battery was imported by a reseller whose name or logo is marked on the equipment or battery, then the owner should return the equipment or battery directly to the reseller. Instructions for returning waste equipment and batteries to Viavi can be found in the Environmental section of Viavi's web site at www.viavisolutions.com. If you have questions concerning disposal of your equipment or batteries, contact Viavi's WEEE Program Management team.

Contents

About This Manual	19
Purpose and scope	20
Assumptions	
Safety and compliance information	20
Safety consideration	20
Battery	20
Electrostatic discharge precautions (ESD)	21
Using 12 V DC automotive adapter	22
Conventions	22
Technical assistance	23
JD780A Series Overview	24
About the JD780A series	25
Features and capabilities	25
Options	
Specifications	
AC power	26
Physical specifications	26
Getting Started	27
Unpacking the JD780A series	
Exploring the JD780A series.	
Front panel	
Top panel	
Installing battery pack	
Starting up the JD780A series	
Managing files	
Using save	
Using load	
Using file manager	
Configuring system	
Setting frequency reference	
Setting frequency reference for 28 GHz downconverter	
Setting date and time	
Setting language	
Setting power on	
Changing display mode	
Setting sleep time	
Adjusting LCD brightness	
Adjusting volume	
Upgrading firmware	
Checking installed firmware version	
Installing new firmware	
Managing licenses	
Checking installed or installable options	
Installing purchased options	
Loading temporary license	
Viewing OSS license	
Performing service diagnostic	
Viewing system log	
Running self-test	
Performing factory reset	43

Re-aligning touch screen	44
Using system administration	
Logging in	44
Changing password	44
Locking limit key	44
Modifying online help	45
Running IP test	
Activating StrataSync	
Setting up Internet connection	
Establishing a connection to StrataSync	
StrataSync status indicators	
Setting up 28 GHz downconverter	
Establishing a connection to 28 GHz downconverter	
Setting communication	
Configuring Ethernet	
Setting for JDViewer and JDRemote	
Setting USBTMC mode	51
Setting SCPI mode	51
Configuring LMF setting	51
Enabling Bluetooth connection	
Enabling Wi-Fi connection	
Enabling Web-based remote control	
Managing help manual	
Adding other help manual	
Viewing help manual	55
nalyzina Maacuramant Poculte	
nalyzing Measurement Results	
Using marker	58
Using peak search	59
sing Spectrum Analyzer	60
Introduction	
IIIII OUUCIOII	
Display overview	61
Display overview Connecting a cable	61 62
Display overview Connecting a cable. Selecting measurement mode	
Display overview Connecting a cable	
Display overview Connecting a cable Selecting measurement mode	
Display overview Connecting a cable Selecting measurement mode Configuring test parameters	
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency Setting frequency for 28 GHz downconverter	
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency Setting frequency for 28 GHz downconverter. Setting amplitude	
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency Setting frequency for 28 GHz downconverter Setting amplitude Setting bandwidth	
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency Setting frequency for 28 GHz downconverter Setting amplitude Setting bandwidth Setting average	61 61 62 63 63 64 65 66 68 68 69
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency Setting frequency for 28 GHz downconverter Setting amplitude Setting bandwidth Setting average Setting sweep	61 62 63 63 64 65 66 68 69 69
Display overview Connecting a cable. Selecting measurement mode. Configuring test parameters. Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude. Setting bandwidth. Setting average. Setting sweep. Using RF source.	61 61 62 63 64 65 65 66 69 69 71
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude Setting bandwidth Setting average Setting sweep Using RF source Conducting spectrum measurements	61 62 63 63 64 64 65 66 68 69 71 72
Display overview Connecting a cable. Selecting measurement mode. Configuring test parameters. Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude. Setting bandwidth. Setting average. Setting sweep. Using RF source. Conducting spectrum measurements Setting trace.	61 62 63 63 64 64 65 66 68 69 71 72 73
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude Setting bandwidth Setting average Setting sweep Using RF source Conducting spectrum measurements Setting trace Setting limit	
Display overview Connecting a cable. Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude. Setting bandwidth. Setting average Setting sweep. Using RF source. Conducting spectrum measurements Setting trace	61 62 62 63 63 64 64 65 66 68 69 71 72 72 73
Display overview Connecting a cable. Selecting measurement mode. Configuring test parameters. Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude. Setting bandwidth. Setting average. Setting sweep. Using RF source. Conducting spectrum measurements. Setting trace. Setting limit.	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 76
Display overview Connecting a cable. Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude Setting bandwidth Setting average Setting sweep Using RF source Conducting spectrum measurements Setting limit. Setting frequency offset	61 62 63 63 64 64 65 65 66 68 69 71 72 73 75 76 76
Display overview Connecting a cable. Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude. Setting bandwidth Setting average. Setting average. Setting sweep. Using RF source. Conducting spectrum measurements Setting limit. Setting frequency offset. Conducting RF measurements.	61 62 63 63 64 64 65 65 66 68 69 71 72 73 75 76
Display overview Connecting a cable. Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude. Setting bandwidth Setting average. Setting sweep. Using RF source. Conducting spectrum measurements Setting limit. Setting frequency offset. Conducting RF measurements Channel power. Occupied bandwidth	61 62 62 63 63 64 64 65 65 66 68 69 71 72 73 75 76 76 76 76 79
Display overview Connecting a cable. Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude. Setting bandwidth Setting average. Setting sweep. Using RF source. Conducting spectrum measurements Setting limit. Setting frequency offset. Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM).	61 62 63 63 64 64 65 66 68 69 71 72 73 75 76
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude. Setting bandwidth Setting average. Setting sweep Using RF source. Conducting spectrum measurements Setting trace Setting limit. Setting frequency offset. Conducting RF measurements. Channel power Occupied bandwidth Spectrum emission mask (SEM) Adjacent channel power (ACP).	61 62 63 63 64 64 64 65 66 68 69 71 72 73 75 76 76
Display overview Connecting a cable. Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude. Setting bandwidth Setting average. Setting sweep. Using RF source. Conducting spectrum measurements Setting trace Setting limit. Setting frequency offset. Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) Adjacent channel power (ACP) Multi-ACP	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 76 76 76
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude. Setting bandwidth Setting average. Setting sweep. Using RF source. Conducting spectrum measurements Setting trace. Setting limit. Setting frequency offset. Conducting RF measurements. Channel power. Occupied bandwidth. Spectrum emission mask (SEM). Adjacent channel power (ACP). Multi-ACP. Spurious emissions	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 75 76 76 81 83
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency Setting frequency for 28 GHz downconverter Setting amplitude Setting bandwidth Setting average Setting sweep Using RF source Conducting spectrum measurements Setting trace Setting limit Setting limit Setting frequency offset Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) Adjacent channel power (ACP) Multi-ACP Spurious emissions AM/FM audio demodulation	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 76 76 76 81 83
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency Setting frequency for 28 GHz downconverter Setting amplitude Setting bandwidth Setting average Setting sweep Using RF source Conducting spectrum measurements Setting limit Setting limit Setting frequency offset Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) Adjacent channel power (ACP) Multi-ACP Spurious emissions AM/FM audio demodulation Field strength meter	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 76 76 76 81 83 83
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency Setting frequency for 28 GHz downconverter Setting amplitude Setting bandwidth Setting average Setting sweep Using RF source Conducting spectrum measurements Setting trace Setting limit Setting frequency offset Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) Adjacent channel power (ACP) Multi-ACP Spurious emissions AM/FM audio demodulation	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 76 76 76 81 83 83
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude Setting bandwidth Setting average Setting sweep. Using RF source. Conducting spectrum measurements Setting trace Setting limit. Setting frequency offset. Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). Adjacent channel power (ACP) Multi-ACP Spurious emissions AM/FM audio demodulation Field strength meter.	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 76 76 76 79 81 83 83 85
Display overview Connecting a cable	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 75 76 76 76 99 81 83 83 85 88
Display overview	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 75 76 76 76 99 81 83 83 85 88
Display overview Connecting a cable Selecting measurement mode Configuring test parameters Setting frequency Setting frequency for 28 GHz downconverter Setting amplitude Setting bandwidth Setting average Setting average Setting sweep Using RF source. Conducting spectrum measurements Setting trace Setting limit Setting frequency offset. Conducting RF measurements. Channel power Occupied bandwidth Spectrum emission mask (SEM) Adjacent channel power (ACP) Multi-ACP Spurious emissions AM/FM audio demodulation Field strength meter Route map Dual spectrum	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 75 76 76 76 99 81 83 83 85 88
Display overview Connecting a cable. Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter Setting amplitude. Setting bandwidth Setting average Setting sweep. Using RF source. Conducting spectrum measurements Setting limit. Setting frequency offset Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) Adjacent channel power (ACP). Multi-ACP. Spurious emissions AM/FM audio demodulation Field strength meter. Route map. Dual spectrum PIM detection (single and multiple carriers) Total Harmonic Distortion (THD)	61 62 63 63 64 64 64 65 66 68 69 71 72 73 75 76 76 76 99 81 83 83 85
Display overview Connecting a cable. Selecting measurement mode. Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter Setting amplitude Setting bandwidth Setting average Setting sweep Using RF source. Conducting spectrum measurements Setting limit. Setting limit. Setting frequency offset Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). Adjacent channel power (ACP). Multi-ACP Spurious emissions AM/FM audio demodulation. Field strength meter. Route map Dual spectrum. PIM detection (single and multiple carriers) Total Harmonic Distortion (THD)	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 76 76 76 99 81 83 85 88 90 90 93
Display overview Connecting a cable. Selecting measurement mode. Configuring test parameters. Setting frequency. Setting frequency for 28 GHz downconverter. Setting amplitude. Setting bandwidth Setting average Setting sweep Using RF source. Conducting spectrum measurements. Setting frequency offset Setting frequency offset Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM) Adjacent channel power (ACP) Multi-ACP Spurious emissions AM/FM audio demodulation Field strength meter. Route map Dual spectrum PIM detection (single and multiple carriers) Total Harmonic Distortion (THD)	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 75 76 76 76 99 81 83 85 88 90 90 91 100 102
Display overview Connecting a cable. Selecting measurement mode Configuring test parameters Setting frequency. Setting frequency for 28 GHz downconverter Setting amplitude. Setting bandwidth Setting average Setting sweep. Using RF source. Conducting spectrum measurements Setting limit. Setting limit. Setting frequency offset Conducting RF measurements Channel power Occupied bandwidth Spectrum emission mask (SEM). Adjacent channel power (ACP). Multi-ACP. Spurious emissions AM/FM audio demodulation Field strength meter Route map. Dual spectrum PIM detection (single and multiple carriers) Total Harmonic Distortion (THD)	61 62 63 63 64 64 64 65 65 66 68 69 71 72 73 75 75 76 76 76 99 81 83 85 88 90 90 91 100 102

Using an AntennaAdvisor handle	
Using an AntennaAdvisor nande	
Selecting measurement mode	
Configuring test parameters	
Setting frequency	
Setting frequency for 28 GHz downconverter	
Setting amplitude	
Setting bandwidth	
Setting average	
Setting sweep	
Conducting spectrum measurements	
Setting trace	
Sound indicator	
AM/FM audio demodulation	
Interference ID.	
Conducting interference measurements	
Spectrogram	
Dual spectrogram	
RSSI	
Interference finder	
Spectrum Replayer	
Radar Chart	
Setting limit for interference analyzer	
a CSM/CDDS/EDCE Signal Analyzar	
g GSM/GPRS/EDGE Signal Analyzer	
Introduction	
Display overview	
Connecting a cable	
Direct connection	
Indirect connection	
Over the air (OTA)	
Selecting measurement mode	
Configuring test parameters	
Setting frequency	
Setting amplitude	
Setting average	
Setting sweep mode	
Setting trigger source	
Conducting spectrum measurements	
Setting measure setup	
Setting trace	
Conducting RF measurements	
3	
Channel power	
Occupied bandwidth	
Spectrum emission mask (SEM)	
Outpur RF spectrum	
Spurious emissions	
Catting limit for DE toots	
Setting limit for RF tests	
Conducting power vs. time measurements	
Conducting power vs. time measurements	
Conducting power vs. time measurements	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements Setting measure setup.	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements Setting measure setup.	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements Setting measure setup. Setting limit for constellation Measurement example Performing auto measurements	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements Setting measure setup. Setting limit for constellation Measurement example	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements Setting measure setup. Setting limit for constellation Measurement example Performing auto measurements	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements Setting measure setup. Setting limit for constellation Measurement example Performing auto measurements Setting limit for auto measure	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements Setting measure setup. Setting limit for constellation Measurement example Performing auto measurements Setting limit for auto measure Setting measure setup. Setting display.	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements Setting measure setup. Setting limit for constellation Measurement example Performing auto measurements Setting limit for auto measure Setting measure setup.	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements Setting measure setup. Setting limit for constellation Measurement example Performing auto measurements Setting limit for auto measure Setting measure setup. Setting display Conducting GSM OTA measurements	
Conducting power vs. time measurements Power vs. time (slot) Power vs. time (frame). Conducting constellation measurements Setting measure setup. Setting limit for constellation Measurement example Performing auto measurements Setting limit for auto measure Setting measure setup. Setting display Conducting GSM OTA measurements Channel scanner	

	Introduction	17 [,]
	Display overview	
	Connecting a cable	
	Direct connection	
	Indirect connection	172
	Over the air (OTA)	173
	Selecting measurement mode	
	Configuring test parameters	174
	Setting frequency	
	Setting amplitude	
	Setting average	17
	Setting sweep mode	
	Setting trigger source	
	Setting external clock	
	Conducting spectrum measurements	179
	Setting trace	179
	Conducting RF measurements	18
	Channel power	
	Occupied bandwidth	18 [.]
	Spectrum emission mask (SEM)	182
	ACLR	183
	Multi-ACLR	184
	Spurious emissions	18
	Setting limit for RF tests	180
	Conducting modulation measurements	18
	Constellation	18
	Code domain power	188
	Relative code domain power	19 [.]
	Codogram	19
	RCSI	19
	CDP Table	19 [°]
	Setting limit for modulation tests	19
	Performing auto measurements	19
	Setting limit for auto measure	20
	Setting measure setup	20
	Setting display	20
	Performing power statistics CCDF measurement	20
	Setting measure setup	20
	Measurement example	20
	Conducting WCDMA/HSPA+ OTA measurements	20
	Channel scanner	20
	Scramble scanner	20
	Multipath profile	20
	Code domain power	20
	Route map	20
U	sing LTE - FDD Signal Analyzer	212
	Introduction	21
	Display overview	
	Connecting a cable	
	Direct connection	
	Indirect connection	21
	Over the air (OTA)	21
	Selecting measurement mode	21
	Configuring test parameters	
	Setting frequency	
	Setting amplitude	
	Setting average	
	Setting sweep mode	
	Setting trigger source	
	Setting external clock	
	Conducting spectrum measurements	
	Setting measure setup	
	Setting trace	
	Conducting RF measurements	22
	Channel power	22

	Occupied bandwidth	224
	Spectrum emission mask (SEM)	
	ACLR	
	Multi-ACLR	
	Spurious emissions	228
	Setting limit for RF tests	230
Con	ducting power vs. time (frame) measurements	
	Setting measure setup	231
	Measurement example	232
Con	ducting modulation measurements	232
	Constellation	232
	Data channel	234
	Control channel	238
	Subframe	240
	Frame	
	Time alignment error	
	Data allocation map	
D f	Setting limit for modulation tests	
Реп	orming auto measurements	
	Conformance test	
	Maintenance test	
	Signal performance test DAS test	
Porf	orming power statistics CCDF measurements	
1 011	Setting measure setup	
	Measurement example	
Perf	orming carrier aggregation measurements	
. •	Setting measure setup	
	Setting display	
	Measurement example	
	Using marker	263
Con	ducting LTE - FDD OTA measurements	264
	Channel scanner	264
	ID scanner	266
	Multipath profile	267
	Control channel	
	Datagram	
	Route map	
Perf	orming RAN performance testing	
	Preparing your smartphone for remote control via Bluetooth	
	Performing RAN performance testing	
	Measurement example	
	Setting performance score level	
Perf	orming NB-IoT modulation analysis	
1 011	Setting measure setup	
	Measurement example	
	Using marker	
Using L	ΓE - TDD Signal Analyzer	284
Intro	duction	285
	lay overview	
•	necting a cable	
	Direct connection	286
	Indirect connection	287
	Over the air (OTA)	287
Sele	cting measurement mode	288
Con	figuring test parameters	289
	Setting frequency	289
	Setting amplitude	
	Setting average	
	Setting sweep mode	
	Setting trigger source	
Con	Setting external clock	
Con	ducting spectrum measurements	
	Setting measure setup	∠93

Setting trace	294
Conducting RF measurements	295
Channel power	295
Occupied bandwidth	296
Spectrum emission mask (SEM)	297
ACLR	299
Multi-ACLR	
Spurious emissions	
Setting limit for RF tests	
Conducting power vs. time measurements	
Power vs. time (slot)	
Power vs. time (frame)	
Conducting modulation measurements	
Constellation	
Control channel	
Subframe	
Time alignment error	
Data allocation map	
Setting limit for modulation tests	
Performing auto measurements	
Conformance test	
Maintenance test	
Signal performance test	
DAS test	331
Performing power statistics CCDF measurements	332
Setting measure setup	
Measurement example	
Performing carrier aggregation measurements	
Setting measure setup	
Setting display	
Measurement example	
Using marker	
Conducting LTE - TDD OTA measurements	
Channel scanner	
Multipath profile	
Control channel	
Datagram	
Route map	
Performing RAN performance testing	
Preparing your smartphone for remote control via Bluetooth	
Setting parameters on RANAdvisor TrueSite™	
Performing RAN performance testing	
Measurement example	
Setting performance score level	352
Heiner CDMA Circuit Anglemen	07.
Using CDMA Signal Analyzer	354
Introduction	
Display overview	
Connecting a cable	
Direct connection	
Indirect connection	
Over the air (OTA)	
Selecting measurement mode	
Configuring test parameters	
Setting frequency	
Setting amplitude Setting average	
Setting average Setting sweep mode	
Setting sweep mode Setting trigger source.	
Setting external clock	
Conducting spectrum measurements	
Setting trace	
Conducting RF measurements	
Channel power	365

Occupied bandwidth	366
Spectrum emission mask (SEM)	367
ACPR	367
Multi-ACPR	368
Spurious emissions	369
Setting limit for RF tests	37
Conducting modulation measurements	372
Constellation	372
Code domain power	373
Codogram	375
RCSI	376
CDP Table	
Setting limit for modulation tests	
Performing auto measurements	
Setting limit for auto measure	
Setting measure setup	
Setting display	
Performing power statistics CCDF measurements	
Setting measure setup	
Measurement example	
Conducting CDMA OTA measurements	
· ·	
Channel scanner	
PN scanner	
Multipath profile	
Code domain power	
Route map	389
sing EV-DO Signal Analyzer	303
sing Ev-DO Signal Analyzer	
Introduction	
Display overview	394
Connecting a cable	395
Direct connection	395
Indirect connection	395
Over the air (OTA)	396
Selecting measurement mode	397
Configuring test parameters	397
Setting frequency	
Setting amplitude	
Setting average	
Setting sweep mode	
Setting trigger source	
Setting external clock	
Conducting spectrum measurements	
Setting trace	
Conducting RF measurements	
Channel power	
•	
Occupied bandwidth	
Spectrum emission mask (SEM)	
ACPR	
Multi-ACPR	
Spurious emissions	
Setting limit for RF tests	
Conducting power vs. time measurements	
Power vs. time (idle slot)	
Power vs. time (active slot)	
Setting limit for power vs. time tests	
Conducting modulation measurements	413
Constellation	413
Code domain power	416
MAC Codogram	418
RCSI	
MAC CDP Table	
Setting limit for modulation tests	
Performing auto measurements	
Setting limit for auto measure	
Setting measure setup	423
DEHILIA HIEGORIE DEHIO	47.

Setting display	424
Performing power statistics CCDF measurements	425
Setting measure setup	
Measurement example	425
Conducting EV-DO OTA measurements	
Channel scanner	
PN scanner	
Multipath profile	
Code domain power	
Route map	432
Jsing TD-SCDMA Signal Analyzer	436
Introduction	
Display overview	
Connecting a cable	
Direct connection	
Indirect connection	439
Over the air (OTA)	439
Selecting measurement mode	440
Configuring test parameters	44(
Setting frequency	44(
Setting amplitude	
Setting average	
Setting sweep mode	
Setting trigger source	
Setting external clock	
Conducting spectrum measurements	
Setting measure setup	
Setting trace	446
Conducting RF measurements	446
Channel power	446
Occupied bandwidth	447
Spectrum emission mask (SEM)	448
ACLR	450
Multi-ACLR	450
Spurious emissions	452
Setting limit for RF tests	453
Conducting power vs. time measurements	
Power vs. time (slot)	
Power vs. time (frame)	
Power vs. time (mask)	
Timogram	
Setting limit for power vs. time tests	
Conducting modulation measurements	
Constellation	461
Midamble power	462
Code power	463
Code error	465
Setting limit for modulation tests	467
Performing auto measurements	
Conducting TD-SCDMA OTA measurements	
Sync-DL ID scanner	
Sync-DL ID scame:	
Sync-DL ID multipath	
Sync-DL ID analyzer	
Route map	473
Jsing Mobile WiMAX Signal Analyzer	477
Introduction	
Display overview	
Connecting a cable	
Direct connection	
Indirect connection	479
Over the air (OTA)	480
Selecting measurement mode	48

	481
Setting frequency	481
Setting amplitude	482
Setting average	484
Setting trigger source	484
Setting sweep mode	484
Setting external clock	485
Conducting spectrum measurements	486
Setting measure setup	486
Setting trace	
Conducting RF measurements	488
Channel power	488
Occupied bandwidth	489
Spectrum emission mask (SEM)	491
Spurious emissions	492
Setting limit for RF tests	494
Conducting power vs. time (frame) measurements	
Setting measure setup	
Setting limit for power vs. time tests	
Measurement example	
Conducting modulation measurements	
Constellation	
Spectral flatness	
EVM vs. subcarrier	
EVM vs. symbol	
Setting limit for modulation tests	
Performing auto measurements	
Performing power statistics CCDF measurements	
Setting measure setup	
Measurement example	
Conducting Mobile WiMAX OTA measurements Preamble scanner	
Multipath profile	
Preamble power trend	
, codo map	
sing NB-IoT Signal Analyzer	515
Introduction	516
Connecting a cable	
Direct connection	
Indirect connection	
Over the air (OTA)	
Selecting measurement mode	518
Selecting measurement mode	518 518
Configuring test parameters	
Configuring test parameters	
Configuring test parameters Setting frequency Setting amplitude	518 518 519 519 519
Configuring test parameters Setting frequency Setting amplitude Setting average	518 518 519 519 519 520 522
Configuring test parameters Setting frequency Setting amplitude Setting average Setting sweep mode	518 518 519 519 520 522
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode Setting trigger source.	518 518 519 519 520 522 522 522
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode Setting trigger source. Setting external clock.	518 518 519 519 519 520 522 522
Configuring test parameters Setting frequency. Setting amplitude. Setting average. Setting sweep mode. Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement.	518 518 519 519 520 522 522 522 523
Configuring test parameters Setting frequency. Setting amplitude Setting average Setting sweep mode Setting trigger source Setting external clock Conducting NB-IoT in band spectrum measurement. Setting measure setup.	518 518 519 519 519 520 522 522 522 523 523
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode. Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace.	518 518 519 519 520 522 522 522 522 523 523
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode. Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis.	518 518 519 519 520 522 522 522 522 523 523 524
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode. Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup.	518 518 519 519 519 520 522 522 522 523 523 524 524
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode. Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup. Conducting NB-IoT guard band spectrum measurement.	518 518 519 519 520 522 522 522 523 523 524 524
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup. Conducting NB-IoT guard band spectrum measurement Setting measure setup.	518 518 519 519 519 520 522 522 523 523 524 524 526 526
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup. Conducting NB-IoT guard band spectrum measurement Setting measure setup.	518 518 519 519 519 520 522 522 522 523 524 524 524 526
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup. Conducting NB-IoT guard band spectrum measurement Setting measure setup.	518 518 519 519 519 520 522 522 522 523 524 524 524 526
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup. Conducting NB-IoT guard band spectrum measurement Setting measure setup.	518 518 518 519 519 520 522 522 523 524 524 524 526 526 526 527
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode. Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup. Conducting NB-IoT guard band spectrum measurement Setting measure setup. Setting measure setup. Setting trace. Conducting NB-IoT guard band spectrum measurement Setting measure setup. Setting trace. Conducting NB-IoT guard band spectrum emission mask (SEM).	518 518 519 519 519 520 522 522 523 524 524 524 526 526 526 527 527
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup. Conducting NB-IoT guard band spectrum measurement Setting measure setup.	518 518 518 519 519 520 522 523 524 524 524 524 526 526 526 527 527 527
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup. Conducting NB-IoT guard band spectrum measurement Setting measure setup. Setting trace. Conducting NB-IoT guard band spectrum emission mask (SEM). Setting measure setup. Conducting NB-IoT guard band modulation analysis.	518 518 519 519 519 520 522 523 523 524 524 524 526 526 526 527 527
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode. Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup. Conducting NB-IoT guard band spectrum measurement Setting measure setup. Setting trace. Conducting NB-IoT guard band spectrum emission mask (SEM). Setting measure setup. Conducting NB-IoT guard band modulation analysis Setting measure setup.	518 518 519 519 519 520 522 523 523 524 524 524 526 526 526 527 527 528
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode. Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup. Conducting NB-IoT guard band spectrum measurement Setting measure setup. Setting measure setup. Setting measure setup. Setting measure setup. Conducting NB-IoT guard band spectrum emission mask (SEM). Setting measure setup. Conducting NB-IoT guard band modulation analysis Setting measure setup. Conducting NB-IoT guard band modulation analysis Setting measure setup. Conducting NB-IoT guard band modulation analysis Setting measure setup. Conducting NB-IoT standalone RF measurements.	518 518 519 519 519 520 522 522 523 524 524 524 526 526 526 527 527 528
Configuring test parameters Setting frequency. Setting amplitude. Setting average Setting sweep mode. Setting trigger source. Setting external clock. Conducting NB-IoT in band spectrum measurement. Setting measure setup. Setting trace. Conducting NB-IoT in band modulation analysis. Setting measure setup. Conducting NB-IoT guard band spectrum measurement Setting measure setup. Setting measure setup. Conducting NB-IoT guard band spectrum measurement Setting measure setup. Conducting NB-IoT guard band spectrum emission mask (SEM). Setting measure setup. Conducting NB-IoT guard band modulation analysis Setting measure setup. Conducting NB-IoT guard band modulation analysis Setting measure setup. Conducting NB-IoT standalone RF measurements. Channel power	518 518 519 519 519 520 520 520 520 520 520 520 520 520 520

ACLR	531
Spurious emissions	532
Setting limit for RF tests	533
Conducting NB-IoT standalone modulation analysis	
Setting measure setup	534
sing Cable and Antenna Analyzer	536
Introduction	537
Display overview	537
Selecting measurement mode	538
Configuring test parameters	
Setting frequency	
Setting distance	
Adjusting scale	
Setting sweep mode	
Performing calibration	
1-port calibration	
2-port calibration	
Calibration status indicators	
Connecting a cable	
Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements	
Connecting a cable for cable loss (1 port) measurements	
Connecting a cable for 2-port vector measurements	
Connecting a cable for 2-port scalar measurements	
Performing reflection measurements	
Making a measurement	
Measurement example	
Performing DTF measurements	
Making a measurement	
Measurement example	
Performing reflection-DTF measurements	
Making a measurement	
Measurement example	
Performing cable loss (1 port) measurements	
Making a measurement	554
Measurement example	554
Performing 1-port phase measurements	555
Making a measurement	555
Measurement example	556
Performing Smith chart measurements	557
Making a measurement	557
Measurement example	558
Performing 2-port vector measurements	558
Making a measurement	558
Measurement example	559
Performing 2-port scalar measurements	559
Making a measurement	559
Measurement example	560
Analyzing measurements	560
Setting trace and display	560
Setting zoom zones	561
Setting alternate DTF band	561
Setting limit for cable and antenna analyzer	562
sing E1 Analyzer	564
Introduction	565
Display overview	
Connecting a cable	
Out-of-service testing.	
In-service monitoring	
Monitoring transmission	
Making a test	
Measurement example	
Performing BERT testing	568

Using T1 Analyzer	
-	
Introduction	
Display overview	
Connecting a cable	
Out-of-service testing	
In-service monitoring	
Monitoring transmission	
Making a test	
Measurement example	
Performing BERT testing	
Making a test	
•	
Measurement example	
Performing RX signal testing	
Making a test	
Measurement example	
Performing loop testing	
Making a test	
Measurement example	
•	
Using Channel Scanner	
-	
Introduction	
Display overview	
Connecting a cable	
Direct connection	
Indirect connection	
Over the air (OTA)	
Selecting measurement mode	
Configuring test parameters	
Setting frequency	
Setting amplitude	
Setting average	
Setting sweep mode	
Making channel scanner measurements	
Setting channel	
Measurement example	
Making frequency scanner measurements	
Setting frequency	
Measurement example	
Making custom scanner measurements	
Setting channel/frequency	
Measurement example	
·	
Analyzing measurements	
Setting limit for channel scanner	
Heiner Device Mater	
Using Power Meter	
Introduction	
Display overview	
Performing internal RF power measurements	
·	
Connecting a cable	
Selecting measurement mode	
Setting frequency	
Setting amplitude	
Setting sweep mode	
Making a measurement	
Measurement example	
Performing external RF power measurements	
Connecting a cable	
Selecting measurement mode	
•	
Setting frequency	
Setting amplitude	
Making a measurement	
Measurement example	
Performing optical power measurements	

Connecting a power meter	603
Selecting measurement mode	604
Setting measurement parameters	604
Making a power measurement	
Reading a relative power	
Holding a measurement	606
Performing Fiber Inspection	607
Introduction	
Display overview	
Connecting a fiber microscope	
Selecting measurement mode	
Configuring test parameters	
Selecting profile and tip	
Setting preferences	609
Performing fiber inspection	610
Capturing fiber image	610
Measurement example	610
Testing a fiber	
Measurement example	612
Using EMF Analyzer	613
Introduction	
Display overview	
Connecting an isotropic antenna	
Selecting measurement mode	
Configuring test parameters	
Setting frequency	
Setting amplitude	
Setting bandwidth	
Conducting EMF spectrum measurements	
Setting trace	
Setting limit	
Recording and replaying EMF logging data	621
Logging EMF spectrum data	
Replaying EMF spectrum data	
Appendix	
Appendix A – Product general information	
Appendix B – Cable list	
Appendix C – Band, frequency & channel standard	
Appendix D – VSWR-Return loss conversion table	
Appendix E – Cyclic prefix table	
Appendix F – Motorola CDMA/EV-DO LMF	
Using JD780A series LMF interface	
Setting up for a LMF test	
Performing a LMF test	634
Appendix G – Bluetooth connection	635
Installing and setting up Bluetooth software	
Making Bluetooth connection	
Setting up communication in application	
Turning Bluetooth mode on/off manually	
Appendix H – Device driver installation	
Appendix I – Ordering information	
JD785A Base Station Analyzer	
JD786A RF Analyzer	
JD788A Signal Analyzer	
JD780A Series Common Options	
Appendix J – RoHS information	
Appendix K – On-screen keyboard	
Adding or adding a sustam kovward	
Editing or adding a custom keyword	
Appendix L – Supported map display parameters	
Transmitter	

About This Manual

Topics discussed in this chapter include the following:

Purpose and scope	20
Assumptions	20
Safety and compliance information	20
Conventions	22
Technical assistance	23

Purpose and scope

The purpose of this manual is to help you successfully operate the JD780A series (firmware version 3.064 and later) and use its features and capabilities. This manual includes instructions that describe how to operate, set up, configure, and use the JD780A series, consisting of JD785A Base Station Analyzer, JD786A RF Analyzer, and JD788A Signal Analyzer.

Assumptions

This manual is intended for novice, intermediate, and experienced users who want to use the JD780A series effectively and efficiently. We are assuming that you have basic operation experience and are familiar with basic mobile communication concepts and terminology.

Safety and compliance information

Safety and compliance information for the instrument are provided upon your request.

Safety consideration

It is mandatory to permanently connect this product to the protective earth.

When powering this instrument externally, always use an AC power cable that includes an earth (safety) ground connection, which is shipped with your instrument.

WARNING

Do not attempt to service this product yourself, as opening or removing covers may expose you to dangerous voltage and other hazards. Refer all servicing to qualified Viavi service personnel.

CAUTION

This equipment contains parts and assemblies sensitive to electrostatic discharge (ESD). Use ESD precautionary procedures when touching, removing, or inserting ESD sensitive parts and assemblies, or damage to components could result.

An electrostatic-sensitive device can only withstand voltage spikes of 10 to 100 volts. Any discharge greater than this can damage or effectively destroy such a device while going unnoticed by a technician. Common plastics (synthetic insulating materials), clothing, and paper or cardboard are the most common source of static charges.

CAUTION

This instrument uses a Lithium Ion battery that, if not connected correctly, may lead to explosion. In case the battery needs to be exchanged, it must be the same kind as or compatible with the one shipped with your instrument.

The battery must not be disposed of in a landfill site or as municipal waste, and should be disposed of according to your national regulations.

Battery

The battery pack that comes with the instrument is Lithium Ion and it may lead to explosion if not connected correctly. In case the battery needs to be replaced, it must be one of the same kinds or compatible ones. Disposal of the batteries must be done according to local safety and environmental regulations.

20

Safety guide

- Do not expose the battery to high temperature such as fire, heat, direct sun, etc.
- Do not connect the positive and negative terminals of the battery together with any metal objects such as wires, paper clips, etc.
- Do not expose the battery to any type of liquid such as rain, water and salt water, etc.
- Do not disassemble or modify the battery.

Storage guide

Lithium Ion batteries continue to slowly discharge (self-discharge) when stored or not in use for a while. In this case, you need to:

- Remove the battery pack and store it separately from the product in a cool and dry location without direct sun light on the pack or its carton box.
- Store the battery at temperatures between 10 °C and 30 °C (50 °F and 86 °F) to minimize the deactivation effect of the battery.
- Storage at the temperatures above 30 °C or 86 °F reduces the battery storage life.
- Charge at least once per 6 months to prevent leakage and deterioration in performance caused by self-discharging.

Battery charge status indicator

You can find the indicator for battery charge status on the battery pack.

Table 1	Battery charge status
Iable I	Dallel V Charde Status

Indicator	Description
00000	Voltage < 9.0 V, immediate charge required
■ 0000	Remaining Capacity Alarm, immediate charge required
= 0000	1 to 19% Remaining, charge before storage
•• 000	21 to 40% Remaining, charge before storage
	41 to 60% Remaining, charge before storage
	61 to 80% Remaining
	81 to 100% Remaining

Electrostatic discharge precautions (ESD)

This instrument was manufactured in an ESD protected environment. Semiconductor devices used in this product are susceptible to damage by static discharge. Depending on the magnitude of the discharge, semiconductor devices may be damaged by direct contact or mere proximity of a static charge. This may cause performance degradation, early failure, or immediate destruction. Use the following guidelines to prevent ESD damage:

Before connecting a cable to this instrument terminal, short circuit the center of the cable with an outside metal shield.

- Before removing a connected cable or getting in contact with the center pin, wear a wrist strap with one MΩ resistor connected to the ground.
- All equipment must be connected to the ground to avoid accumulation of static charges.

Using 12 V DC automotive adapter

When powering or charging this instrument with the 12 V DC Automotive Adapter, always verify that the supply is rated for a minimum of 60 Watts @12 V DC and that the socket is clear of any dirt or debris. If the adapter plug gets hot to touch during operation, discontinue the use immediately.

Conventions

This document uses typographical and symbols conventions as described in the following tables.

Table 2 Text formatting and other typographical conventions

Item	Text formatting/symbols used	Example(s)
Buttons or hard keys that the user presses on a physical device	Bold, all caps, default font	Press the ON button. Press the MODE hard key. Press the MARKER hard key.
Hot keys that the user presses on a physical device	Bold, all caps, italics, default font	Press the SYSTEM hot key. Press the MEASURE hot key.
Soft keys or toggle keys that the user presses on a physical device to select corresponding menus	Bold, default font	Press the Span soft key. Press the Channel Power soft key.
Soft key option separators	Denoted by a vertical bar that means "or", only one option can be selected with a single press	Press the Zone [1 2 3] soft key.
File type	Courier New	In .tra file type.
Required arguments (text variables in code)	Denoted by slanted brackets < >.	Enter <password></password>

Table 3 Symbol conventions

This symbol represents a general hazard. It may be associated with either a DANGER, WARNING, or CAUTION message.

This symbol represents hazardous voltages. It may be associated with either a DANGER, WARNING, or CAUTION message.

This symbol represents a risk of explosion. It may be associated with either a DANGER, WARNING, or CAUTION message.

This symbol, located on the equipment, battery, or the packaging indicates that the equipment or battery must not be disposed of in a landfill site or as municipal waste, and should be disposed of according to your national regulations.

22 About This Manual

Table 4 Safety definitions

DANGER

Indicates a potentially hazardous situation that, if not avoided, *will* result in death or serious injury. It may be associated with either a general hazard, high voltage, or risk of explosion symbol.

WARNING

Indicates a potentially hazardous situation that, if not avoided, *could* result in death or serious injury. It may be associated with either a general hazard, high voltage, or risk of explosion symbol.

CAUTION

Indicates a potentially hazardous situation that, if not avoided, *could* result in minor or moderate injury and/or damage to equipment. It may be associated with either a general hazard, high voltage, or risk of explosion symbol.

When applied to software actions, indicates a situation that, if not avoided, *could* result in loss of data or a disruption of software operation.

Technical assistance

JD780A Series Overview

This chapter provides a general description of the JD780A series. Topics discussed in this chapter include the following:

About the JD780A series	25
Features and capabilities	25
Options	26
Specifications	26

About the JD780A series

Viavi wireless RF and fiber test solutions for the field include base station analyzers, cable and antenna analyzers, and signaling analyzers for the installation and maintenance of modern wireless communication systems. RF and fiber test is critical for wireless operators facing challenges of signal quality and signaling interference, and maintaining quality high-bandwidth services.

The JD780A series addresses spectrum analysis, interference analysis, and cable, antenna and

modulation analysis, covering current wideband technologies such as WiMAX and LTE/LTE-Advanced.

Base station analyzer JD785A

The Base Station Analyzer contains all the features and capabilities required to perform field testing of cell sites of all wireless technologies, from 2G to 4G.

RF analyzer JD786A

The RF Analyzer provides multi-purpose solution for the analysis of RF systems covering all physical aspects of transmission, reception, and interference of RF systems up to 8 GHz.

Signal analyzer JD788A

The Signal Analyzer contains all the features and capabilities required to perform cell site field testing for all wireless technologies from 2G to 4G.

Features and capabilities

The JD780A series is the optimal test solution for installation and maintenance of cellular base stations and cell sites, running with external AC power or battery for the field.

The user interface has been specifically designed with customized menus and simple calibration procedures, providing service providers with accurate and reliable measurement results.

Applicable Systems

- cdmaOne/cdma2000
- EV-DO
- WCDMA/HSPA+
- GSM/GPRS/EDGE
- TD-SCDMA
- WiMAX
- LTE/LTE-Advanced (FDD/TDD)

Key Features

Table 5 Key functions

Functionality	JD785A	JD786A	JD788A
Spectrum Analyzer		•	•
Cable and Antenna Analyzer	•	-	
RF Power Meter		•	•
Optical Power Meter	•	•	•
Fiber Inspection		•	
Signal Analyzers (optional)	•		•
E1/T1 Analyzers (optional)			
Interference Analyzer (optional)	•	-	•
Channel Scanner (optional)			
OTA Measurement (optional)	•		•
EMF Analyzer (optional)			

Options

This instrument is provided with various options/features that are available to be ordered. See "Appendix I – Ordering information" on page 639 for more information.

Specifications

AC power

Input voltage is automatically selected within the instrument's tolerable input line voltage from 100 to 240 VAC. This instrument does not have a separate line protection fuse.

 Table 6
 AC power requirements

Item	Specification
AC Power	100 to 240 V AC, 50-60 Hz
Power Consumption	37 W in operation; 49 W with battery charging

Physical specifications

Table 7 shows weight with standard configurations and the battery pack installed.

 Table 7
 Physical specifications

rameter	JD785A/JD786A	JD788A
ight	7.7" (195 mm)	7.7" (195 mm)
dth	11.6" (295 mm)	11.6" (295 mm)
pth	3.2" (82 mm)	3.2" (82 mm)
dth	11.6" (295 mm)	11.6" (295 mm)

Getting Started

This chapter provides general guides of how to get started with your JD780A series instrument. Topics discussed in this chapter are as follows:

Unpacking the JD780A series	28
Exploring the JD780A series	28
Installing battery pack	32
Starting up the JD780A series	33
Managing files	33
Configuring system	37
Upgrading firmware	40
Managing licenses	41
Performing service diagnostic	43
Using system administration	44
Running IP test	45
Activating StrataSync	46
Setting up 28 GHz downconverter	48
Setting communication	49
Managing help manual	55

Unpacking the JD780A series

Unpack and inspect the shipping package thoroughly to ensure that nothing was damaged during the shipment. Also, check that your delivered package includes all of your ordered items in the shipment. If contents in the package are damaged or defective or if there are any missing items, keep the shipping list and materials for carrier's inspection and contact your nearest Viavi's authorized sales and service office.

A basic test set of JD780A series would include the following items in the package. For more options, see "Appendix I – Ordering information" on page 639.

 Table 8
 Items included in a basic test set shipment

Item	Quantity
JD780A series instrument (JD785A, JD786A, or JD788A)	1
AC/DC power adapter and power cord	1
1.5 meter cross LAN cable	1
1.8 meter USB A-to-B cable	1
> 1 GB USB memory	1
Rechargeable Lithium Ion battery pack	1
12 V DC automotive adapter	1
Stylus pen	1
User's manual and application software CD	1

Exploring the JD780A series

Figure 1 JD785A front panel view

Front panel

The JD780A series analyzers have the same front panel look as like Figure 1, except for the bumpers in different colors.

Power on/off button

Key	Description
(6)	POWER ON/OFF – You can turn your instrument on or off. Two LEDs indicate power source and status. See "Starting up the JD780A series" on page 33.

Function hard keys

You can use these hard keys to activate specified functions as labeled on each key.

Key	Description
Nicela	MODE – You can select an analyzer mode from all the standard and optional modes available to your instrument.
FeetDat	FREQ/DIST – You can configure frequency or distance settings.
AmpiScale	AMP/SCALE – You can configure amplitude and scale settings.
BANANG	BW/AVG – You can configure bandwidth and average settings.
The to Diviglary	TRACE/DISPLAY – You can set up trace and display parameters.
Name	MARKER – You can analyze measurements with markers.
Piece Shorth	PEAK SEARCH – You can set up peak search parameters.

Hot keys

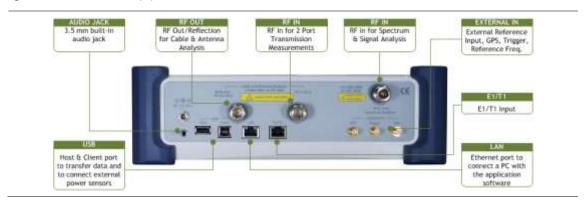
When the user input field on the screen is inactive, you can use these hot keys to activate specific functions instead of numbers. When you see the user input field activated or highlighted, press the **ESC** hard key to use these hot keys.

Key	Description
	MEASURE – You can select measurements available for your selected analyzer mode.
	MEASURE SETUP – You can set measurement parameters available for your selected measurement mode.
	SAVE/LOAD – You can save or load your current screen, result, setup, or limit into or from the internal memory or an external USB memory drive.
	SWEEP – You can configure sweep parameters.
Тгоррих 2	TRIGGER – You can select trigger options such as internal, external, and GPS.
3	SYSTEM – You can configure your system settings or view your current system information.

Preset 6	PRESET – You can use this key to return to a known state and make measurements.	
9	HOLD – You can change the sweep mode: Continue or Single.	
Larrel +/-	LIMIT – You can set limit settings such as display line, multi segment line, Save Limit s, recall limits, or test specification limits.	
	BACKLIGHT – You can turn the key backlight feature on or off.	
~~	HELP – You can have the online help screen if available.	

Soft keys

You can use not only the touchscreen keys but also these physical soft keys placed along the right side of the display to start a specific function associated with each soft key, invoke other screen keys, or select a unit. The **More** screen menu indicates that there are more than seven screen menus for the level. The small arrowhead symbol in the screen menu indicates that there are screen menus under the screen menu.


Data entry and other keys

Key	Description	
	ROTARY KNOB WITH ENTER KEY – You can change a value with predefined increments or move marker position. Rotating this knob clockwise increases value or moves a marker to the right and rotating counter clockwise does vice versa. This knob works as the ENTER hard key as well.	
	ARROW KEYS – You can increase or decrease value or move your selection up, down, to the left, or to the right.	
5 State 5	NUMERIC KEYS – You can manually enter a value for measurement parameters.	
Del	DEL – You can delete data entry. After pressing the ENTER key or selecting a unit soft key, you cannot delete or remove data entered.	
Enter	ENTER – You can save and confirm data entry.	
ESC	ESC – You can cancel any input in the user input field or dismiss a pop-up window on the screen.	
From	PREV – You can go back to the previous menu without changing current setup.	

Top panel

The JD785A and the JD786A analyzers have the same top view as Figure 2, except for the E1/T1 inlet. The JD786A has the GPIO inlet instead.

Figure 2 JD785A top panel view

Reflection/RF Out (Cable and Antenna Analyzer)

The **Reflection/RF Out** port of the Cable and Antenna Analyzer is a precise 50 Ω N-type female connector that is used as the output signal port for the Cable and Antenna Analyzer mode.

CAUTION

Do not apply or connect power exceeding +25 dBm to this Reflection/RF Out port. If such power is applied, it will degrade the product's performance and can cause damage to the product in worst case.

RF In (Cable and Antenna Analyzer)

The **RF In** port is a precise 50 Ω N-type female connector that is used as the input signal port for 2-port vector measurements in the Cable and Antenna Analyzer mode.

CAUTION

The maximum power allowed to the RF In port is +25 dBm. If the input power exceeds the limit, it may degrade the product performance or cause damage to the instrument in a worst case. Do not connect any power feed exceeding 1 W directly to this port.

DC 18 V

The input power to this port shall be 18 V DC.

RF In (Spectrum Analyzer)

The **RF In** port is a precise 50 Ω N-type female connector that is used as the input signal port for spectrum analysis, signal analysis, and RF power measurement.

CAUTION

The maximum power allowed to the RF In port is +25 dBm. If the input power exceeds the limit, it may degrade the product performance or cause damage to the instrument in a worst case. Do not connect any power feed exceeding 1 W directly to this port.

Audio jack

The audio jack is labeled with a headphones icon. Plugging in headphones or earphones turns the speaker off.

Getting Started 31

USB

- **CLIENT:** This is a communication port that you can connect your instrument and your PC with application software JDViewer, JDRemote, or JDMapCreator. You must install driver software for the instrument on to the computer. See "Appendix H Device driver installation" on page 638 for more information.
- **HOST:** You can use this port to plug in an external USB memory to extend storage capacity or to upgrade the instrument's firmware. It supports most USB memory devices with 32-bit file system. You can also use this port to connect an external power sensor, Bluetooth USB adapter, or P5000i fiber microscope. See "Appendix G Bluetooth connection" on page 635 on how to set up and use the Bluetooth connection.

LAN

You can use this Ethernet communication port to connect your instrument and your PC using the application software JDViewer or Motorola WinLMF, if necessary. Two LEDs indicate data transfer activity and link status.

- **ACTIVITY:** The yellow LED is illuminated during data transfer.
- **LINK:** The green LED is illuminated when there is a valid communication connection.

E1/T1 for JD785A

You can use this E1/T1 input port to detect an error or alarm from E1/T1 signal and to transmit test pattern to E1/T1 transmission line connected through the provided RJ45 cable accessory.

GPIO for JD786A and JD788A

This General Purpose Input/Output (GPIO) port is factory use only.

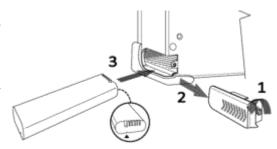
External In

- **GPS:** You can plug in a GPS antenna to this SMA type female connector in order to get location information and highly accurate reference.
- **TRIGGER:** You can use this SMA type female connector to receive PP2S clock or 10 ms synchronization signals from an external timing reference.
- **REF:** You can use this SMA type female connector to receive 10 MHz, 13 MHz, or 15 MHz reference clock signals from an external frequency source.

Installing battery pack

You need to install the Lithium Ion battery pack provided with your instrument. Follow the instruction to install or remove the battery pack as needed.

Procedure


To install the battery pack:

- 1. Loosen the latching screw of the battery cover by turning counter clockwise.
- 2. Slide out the battery cover to open.
- 3. Insert the battery pack with the connector terminal side up and push in until it stops.

- **4.** Slide in the battery cover to close.
- Tighten the latching screw of the battery cover by turning clockwise.

To remove the battery pack:

- Loosen the latching screw of the battery cover by turning counter clockwise.
- 2. Slide out the battery cover.
- 3. Hold the battery strap and pull it out.

CAUTION

The battery pack that came with your instrument is Lithium Ion and it may, if not connected correctly, lead to explosion. In case you need to replace the battery, you must use one of the same kinds or compatible ones. You must dispose a battery according to your local safety and environmental regulations.

NOTE

It is recommended that you turn off the instrument to replace the battery. However, if you do not want to interrupt the current test, you can leave the module turned on with the AC power adapter plugged in.

Starting up the JD780A series

Use the power button to turn your JD780A series on or off. When external power is supplied via the AC/DC adapter, the upper orange LED is illuminated.

Procedure

To turn on:

- 1. Press and hold the POWER button for a few seconds until the lower green LED indicator is illuminated.
- 2. Release the button and wait for a few seconds while booting up.

To turn off:

- 1. Press and hold the POWER button for a few seconds until the lower green LED indicator goes out.
- 2. Release the button.

Managing files

The JD780A series lets you save and load screen, result, setup, limit, logging data, or Fail events depending on your selected measurement mode and option.

NOTE

If you see greyed-out menus as you change measurement modes, this indicates that the menu(s) are not available to be used.

Using save

You can save your current screen, result, setup, and limit into the internal memory or your external USB memory drive.

Procedure

- 1. Press the SAVE/LOAD hot key. The Save/Load screen menu bar appears.
- 2. Press the Save soft key.
- 3. Select the save option, from the following choices:

To save	Select	File type
Current screen	Save Screen > Screen	.png
Measurement result in a report format with comments	Save Screen > Report	.pdf
Measurement result	Save Result	.tra .gom .grr .jdt
Measurement result (.csv)	Save Result as CSV Format	.csv
Setup and test configuration	Save Setup	.sta
Limit setting	Save Limit	.jml
Logging data	Save Logging Data	.grr .gsr .csv
Automatically screen or results that falls outside the defined limit settings (Failed event)	Save On Event	.png .tra .csv

The on-screen keyboard appears.

NOTE

- Save Setup saves a test configuration only and measurement limit setting. You must use Save Limit to save your limit settings.
- In the Spectrum measurement of Spectrum Analyzer and Interference Analyzer modes, Save Setup saves the test configuration and measurement limit settings.
- In the Cable and Antenna Analyzer mode, if the limit line is enabled and set, Save Result saves the trace together with the set limit line.
- In the Spectrum measurement of Spectrum Analyzer and Interference Analyzer modes, if the limit line is enabled and set, Save Result saves the trace together with the set limit line.
- 4. Type the name of the file in the **File Name** field with or without using a keyword.
- Optional.
 - To create or edit keywords, touch the Edit Keywords button, select your desired keyword button in the upper screen, type a keyword, and then tap the Save button on the keyboard.
 See "Editing or adding a custom keyword" on page 646 for more information.
 - To include a keyword in the file name, touch the **Append Keywords** button, select your desired keyword, and then tap the **Keyboard** button. See "Appending a keyword" on page 647 for more information.
 - To change the file location in the internal memory or to your USB memory drive, tap the Location button, select your desired file path using the touch screen or the rotary knob, and then press the Apply soft key.

- To create a folder, press the Create Folder soft key, type a directory name, and then press the Apply soft key.
- 6. Press the Save soft key.

Saving fail events

Depending on the measurement mode, you can let the instrument automatically save measurement screen or result that falls outside the defined limit settings or the Fail indicator is on. You can also set to save the first event and hold the measurement or to save all the events continuously.

Procedure

- 1. Press the SAVE/LOAD hot key. The Save/Load screen menu bar appears.
- 2. Press the Save soft key.
- 3. Press the Save On Event soft key.
- Press the Save Type soft key, and then select the save option: Screen, Result, or Result as CSV Format.
- 5. Optional. Toggle the **Save Then Stop** soft key and select **On** in order to save the first event that falls outside the limit(s) and to hold the measurement. Otherwise, leave this feature off to save events continuously.
- 6. Press the Start soft key to start saving. The on-screen keyboard appears.
- 7. Type the name of the file in the **File Name** field with or without using a keyword.
- 8. Optional.
 - To create or edit keywords, touch the Edit Keywords button, select your desired keyword button in the upper screen, type a keyword, and then tap the Save button on the keyboard.
 See "Editing or adding a custom keyword" on page 646 for more information.
 - To include a keyword in the file name, touch the **Append Keywords** button, select your desired keyword, and then tap the **Keyboard** button. See "Appending a keyword" on page 647 for more information.
 - To change the file location in the internal memory or to your USB memory drive, touch the
 Location button, select your desired file path using the touch screen or the rotary knob,
 and then press the Apply soft key.
 - To create a folder, press the Create Folder soft key, type a directory name, and then press the Apply soft key.
- Press the **Done** soft key.
 The "Event Save" appears on the screen and the **Start** screen menu changes to **Stop**.
- 10. Press the **Stop** soft key to end the event saving.

Saving logging data

You can save logging data in if your measurement mode supports this feature and has the activated Save Logging Data soft key.

Procedure

- 1. Press the SAVE/LOAD hot key. The Save/Load screen menu bar appears.
- 2. Press the Save soft key.
- 3. Press the Save Logging Data soft key. The on-screen keyboard appears.
- 4. Type the name of the file in the File Name field with or without using a keyword.
- 5. Optional.

- To create or edit keywords, touch the Edit Keywords button, select your desired keyword button in the upper screen, type a keyword, and then tap the Save button on the keyboard.
 See "Editing or adding a custom keyword" on page 646 for more information.
- To include a keyword in the file name, touch the **Append Keywords** button, select your desired keyword, and then tap the **Keyboard** button. See "Appending a keyword" on page 647 for more information.
- To create a folder, press the Create Folder soft key, type a directory name, and then press the Apply soft key.
- To change the file location in the internal memory or to your USB memory drive, touch the
 Location button, select your desired file path using the touch screen or the rotary knob,
 and then press the Apply soft key.

NOTE

In is recommended that you use an external USB memory drive to save logging data in the Auto Measure mode in order to have enough free space.

- 6. Optional only in the Auto Measure mode. Toggle the Save Screen soft key and select All to save all the Auto Measure screens or Fail to save only the ones with the Fail on.
- Press the Save soft key to start logging.
 The "Recording" appears on the screen.
- Press the ESC hard key to stop logging data and complete saving.

Using load

You can load your saved screen, result, setup, and limit from the internal memory or your external USB memory drive.

Procedure

- 1. Press the SAVE/LOAD hot key. The Save/Load screen menu bar appears.
- 2. Press the Load soft key. The Load screen menu bar appears.
- 3. Select the load option, from the following choices:

To load	Select
Saved screen or report	Load Screen
Measurement result	Load Result
Setup and test configuration	Load Setup
Limit setting	Load Limit
Logging data	Load Logging Data
Map file	Load Map
Scenario	Load Scenario

The file manager window appears.

- **4.** Select the name of the file to be loaded from the internal memory or from your USB drive. Information of your selected file appears in the File Information pane.
- 5. Press the Load soft key.

Using file manager

The File Manager lets you copy, cut, paste, and delete data files saved in the internal memory or in your USB memory drive.

Procedure

- 1. Press the SAVE/LOAD hot key. The Save/Load screen menu bar appears.
- 2. Press the File Manager soft key. The file manager window appears.
- 3. To copy, cut, and paste, complete the following steps:
 - a. Select a file or folder by using the touch screen or the rotary knob.
 - b. Select the Copy or Cut soft key.
 - **c.** Select the location to which the file or folder to be pasted.
 - d. Press the Paste soft key.
- 4. To delete, complete the following steps:
 - a. Select a file or folder by using the touch screen or the rotary knob.
 - Press the **Delete** soft key.
 The confirmation dialog box appears.
 Once the file or folder is deleted, you cannot recover it.
 - c. Select OK to delete.
- 5. Press the Exit soft key or the ESC hard key to close the file manager window.

Configuring system

Setting frequency reference

You can improve measurement accuracy by setting frequency reference.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Press the Freq Reference soft key.
- Select the frequency reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz. or GPS.

Setting frequency reference for 28 GHz downconverter

You can improve measurement accuracy by setting frequency reference.

Procedure

- 1. Press the SYSTEM hot key.
- Press the Freq Reference soft key.
- Once pressed CellAdvisor soft key, select the frequency reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.
- 4. Once pressed 28G DC soft key, select the option between Internal and External.

Setting date and time

You can set the instrument' system clock to your region.

Procedure

- 1. Press the **SYSTEM** hot key.
- 2. Select System Configuration > Date/Time. The current time zone information box appears.
- 3. To change the standard time zone, complete the following steps:
 - a. Press the Std Time Zone soft key.
 - b. Select your time zone by using the rotary knob or arrow keys. You can also use the Top/Bottom or Page Up/Down soft keys.
 - **c.** Press the **ENTER** hard key to save your change. You can also press the rotary knob.
- 4. To change the date format, complete the following steps:
 - a. Press the Date Format soft key.
 - b. Select YYMMDD, MMDDYY, or DDMMYY as needed.
- **5.** To set the date and time manually, complete the following steps:
 - a. Select Year, Month, Day, Hour, or Minute soft key as needed.
 - b. Enter a value by using numeric keys.
 - c. Press the Enter soft key to save your change.
- 6. Press the Apply screen key to save and exit.

Setting language

You can change the system language for the menus, messages, and information on screen.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select System Configuration > Language.
- 3. Select the language option from the choices available.

Setting power on

- 1. Press the SYSTEM hot key.
- 2. Press the Power On soft key.
- 3. Select the power-on option, from the following choices:
 - Last: Boots up with the last state of the instrument before power-off or shut-down.
 - Preset: Boots up with the default settings preset in the factory.
 - User: Boots up with the user-defined setup.
 When the User is selected, the User Setup menu under System becomes activated.
- 4. Optional. . If you have selected User in step 3, complete the following steps to specify a user setup file to be used:
 - a. Press the User Setup soft key.

- **b.** Select the name of the user setup file.
- c. Press the Done soft key.

The Preset is to revert to original factory settings. It is recommended that you use this option when you have experienced badly misadjusted settings.

Changing display mode

You can change the instrument's display mode as needed.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select System Configuration > Display Mode.
- 3. Select a display mode from the choices: Indoor, Outdoor, and Night.
- 4. The instrument optimizes screen colors to each choice.

Setting sleep time

You can set the amount of time up to 255 minutes to let the instrument automatically turn the backlight off and enter into power saving mode after no actions or data entries. Default setting is zero, which indicates that the sleep mode is turned off and screen backlight is always on.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select System Configuration > Sleep Time.
- 3. Enter the amount of minutes by using the numeric keys. You can also use the rotary knob.
- 4. Press the Enter soft key.

Adjusting LCD brightness

You can adjust display brightness from one to ten as needed. The larger number you set, the brighter the display becomes.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select System Configuration > LCD Brightness.
- 3. Enter a value by using the numeric keys. You can also use the rotary knob.
- 4. Press the Enter soft key.

Adjusting volume

You can turn the sound on or off or adjust the volume from one to ten as needed.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select the sound option, from the following choices:
 - To turn the sound or alarm off, toggle the Sound soft key and select Off.
 - To turn the sound or alarm on, toggle the Sound soft key and select On.
 - To adjust the volume, complete the following steps:
 - a. Press the Sound soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

Upgrading firmware

It is recommended that you maintain your instrument up-to-date with its latest firmware in order to achieve the instrument's optimal performance.

Checking installed firmware version

Procedure

- 1. Press the SYSTEM hot key.
- 2. Press the HW/FW Info soft kev.
- 3. Find the installed version number in the Firmware field.
- 4. From a computer with Internet access, visit <u>Viavi's Software Updates website</u> and check if your installed firmware is the latest one. Do the steps 5-6 if you want to update your firmware with using your USB memory drive.
- 5. Download a latest firmware file from the website to the root directory of your USB memory drive.

It is recommended that you format your memory drive to have enough space to download the file.

6. Unzip the download file into the root directory of your USB memory stick. A firmware file (* . fw) and a firmware release note (* . pdf) are extracted.

Installing new firmware

To update your firmware, you can choose either way of using your USB memory drive or accessing the FTP server over the network.

Upgrading from USB memory drive

- 1. Power your instrument via the AC-DC adapter to prevent any severe damage to your instrument caused by a power-off in the middle of the upgrade, which may require a repair in the factory.
- 2. Plug in the USB memory drive to the **USB Host** port of your instrument.
- 3. Press the SYSTEM hot key.
- Select More (1/2) > Upgrade > USB.
 The file manager window appears.

- 5. Highlight the firmware file (.fw) saved in the root directory of your USB drive.
- 6. Press the Select soft key. The Update Firmware dialog box appears.
- Press the **OK** button to start to install the new firmware. The Upgrade Status bar appears.

Firmware upgrade will be done within 30 minutes or so in most cases, but depending on the number of files to be reconfigured, it may take longer than that.

8. After you have restarted the instrument, check the installed firmware version and DSP versions in the System settings. Refer to the firmware release note to find correct DSP version and compatible application software versions.

WARNING

Do not remove the USB drive while upgrading the firmware.

Upgrading from FTP server

Procedure

- 1. Power your instrument via the AC-DC adapter to prevent any severe damage to your instrument caused by a power-off in the middle of the upgrade, which may require a repair in the factory.
- 2. Press the SYSTEM hot key.
- Select More (1/2) > Upgrade > FTP Server.
 The upgrade server dialog box appears.

NOTE

Older version of firmware does not have the FTP Server option. It is recommended that you update your firmware with the USB option first.

- 4. Enter ftp2.jdsu.com in the server address field.
- Enter your proxy server address in the proxy server field, if necessary. Contact your system administrator for your proxy server information.
- 6. Tap the Check button to check if the installed firmware version is the latest one.
- 7. Do one of the following:
 - If you view the latest firmware version information, tap the Install button to continue.
 - If the message "Your firmware is up to date." is displayed, tap the Cancel button.

NOTE

Firmware upgrade will be done within 30 minutes or so in most cases, but depending on the number of files to be reconfigured, it may take longer than that.

8. After you have restarted the instrument, check the installed firmware version and DSP versions in the System settings. Refer to the firmware release note to find correct DSP version and compatible application software versions.

Managing licenses

The License Manager lets you view installed options, install additional ones, and load evaluation licenses.

Checking installed or installable options

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select More (1/2) > License Manager. The License Manager menu bar appears.
- 3. Select the menu, from the following choices:
 - To view the installed options, select the Installed Options soft key.
 The list of options appears. The "(T)" indicates temporary licenses.
- 4. To view the installable options, select the **Installable Options** soft key.

Installing purchased options

Procedure

- 1. Press the SYSTEM hot key.
- Select More (1/2) > License Manager.
 The License Manager menu bar appears.
- 3. Select the Install an Option soft key. The Installable Options window appears.
- 4. Highlight the name of the option from the list by using the rotary knob.
- Press the ENTER hard key. You can also press the rotary knob. The License Code bar appears.
- **6.** Type the number of the license to activate by using the numeric keys.
- 7. Press the ENTER hard key. You can also select the Enter soft key.

Loading temporary license

The temporary license that you received from Viavi is intended for your evaluation only and it expires after its specified time limit.

Procedure

- 1. Press the SYSTEM hot key.
- Select More (1/2) > License Manager. The License Manager menu bar appears.
- 3. Select the Load Temp License soft key. The file manager window appears.
- 4. Select the name of the license file.
- 5. Press the Load soft key.
- 6. Optional. You can check the loaded license using the Installed Options menu.

Viewing OSS license

The JD780A series incorporates software that is covered by either the GNU General Public license or GNU Lesser General Public License. Check the OSS license notification for more details.

Procedure

To view OSS license notification and distribution:

1. Press the SYSTEM hot key.

- Select More (1/2) > License Manager.
 The License Manager menu bar appears.
- Select the OSS License soft key.
 The Open Source Code Notification & Distribution screen appears.

Performing service diagnostic

The Service Diagnostic lets you view system log, perform self-test, revert the instrument settings to its factory settings, or perform touch alignment.

Viewing system log

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select More (1/2) > Svc Diagnostic > System Logging.
- 3. Optional. Press the Save soft key to save the system log as a .log file type.

Running self-test

You can run a self-test on your instrument boards and modules.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select More (1/2) > Svc Diagnostic > Self Test.

The on-screen instruction appears.

- 3. Connect a test cable between the **Reflection/RF Out** port for Cable and Antenna Analyzer and the **RF In** port for Spectrum Analyzer.
- Press the Start soft key.
 The test result window appears.
- 5. Optional. Press the Save Screen soft key to save the self-test results.

Performing factory reset

The Factory Reset is used only when you want to purge all the user settings and data stored in the system and return to the instrument's factory state.

Procedure

- 1. Press the SYSTEM hot key.
- Select More (1/2) > Svc Diagnostic > Factory Reset.
 The confirmation dialog box appears.
- 3. Press the Yes soft key to continue. Otherwise, select No.

NOTE

It is recommended that you copy your setup or result data to an external USB memory drive so that you can restore them later.

Re-aligning touch screen

When you consistently experience of the instrument responding improperly to your touch on the screen, you may need to perform this touch-screen alignment.

Procedure

- 1. Press the SYSTEM hot key.
- Select More (1/2) > Svc Diagnostic > Touch Alignment.
 The white screen with a plus sign (+) in the upper-left corner appears.
- 3. Touch the plus sign and repeat until the previous screen is back on.

Using system administration

The Administration is used to disable editing limits, enable modifying online help, or change administration password.

Logging in

You need to log in first to access the administration menus.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select More (1/2) > Administration. The password box appears.
- Enter <password> by using the numeric keys.
 Default password is "0000". To change the password, see "Changing password" on page 44.
- 4. Press the Apply soft key.

Changing password

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select More (1/2) > Administration, and then enter your password.
- 3. Press the Change Password soft key. The new password box appears.
- 4. Enter a new password up to eight digits by using the numeric keys.
- 5. Press the Apply soft key. The reconfirmation box appears.
- **6.** Enter the new password again by using the numeric keys.
- 7. Press the **Apply** soft key to complete changing password.

Locking limit key

You can lock the *LIMIT* hot key and disable editing predefined limit settings to prevent any unintentional changes, which could result in incorrect measurements.

Procedure

Press the SYSTEM hot key.

- Select More (1/2) > Administration, and then enter your password.
- Toggle the Edit Limit soft key and select Disable to lock the LIMIT hot key or Enable to unlock the key.

Disabling the Edit Limit limits the access to the *LIMIT* hot key only. The Limit features including displaying limit line(s) and Pass/Fail result function properly as predefined.

Modifying online help

The online help can be modified if needed.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select More (1/2) > Administration, and then enter your password.
- Toggle the Modify Help soft key and select Enable to allow modifying the online help or Disable to restrict any modification.

Running IP test

You can test an Internet Protocol (IP) configuration of the cell site's backhaul.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select More (1/2) > Utility > IP Test.
- 3. Select the command option, from the following choices:
 - To display the route and measure transit delays of packets, toggle the Commands soft key and select Traceroute.
 - To display the reachability and measure the round-trip time, toggle the Commands soft key and select Ping.
- 4. To set the destination IP address to be tested, complete the following steps:
 - a. Press the Destination IP soft key.
 - b. Press the First Octal soft key.
 - c. Enter a value, and then press the Enter soft key.
 - d. Press the Second Octal soft key and repeat step c.
 - e. Press the Third Octal soft key and repeat step c.
 - f. Press the Fourth Octal soft key and repeat step c.
- Press the Execute soft key and select Start to start testing. Test result is displayed on the screen as the test is progressing.
- Press the Execute soft key and select Stop to stop testing.
- 7. Optional. Press the **Save** soft key to save the test result as a .txt file type.

Activating StrataSync

StrataSync is a cloud-based solution that provides asset, configuration, and test data management for Viavi instruments. StrataSync manages and tracks test instruments, collects and analyzes results from the entire network, and informs and trains the workforce.

The JD780A series is compatible with the Viavi StrataSync cloud. This optional capability allows you to manage your instrument inventory ensuring you know where all your valuable equipment is and which engineer is using it. In addition, it allows you to keep your instruments current through the remote upgrade capability that ensures all instruments have the latest firmware. It also enables the centralized distribution of configuration settings to ensure all your engineers use the same instrument settings resulting in consistent measurements.

Once testing is completed, the trace files can be uploaded onto StrataSync for secure storage and sharing. This sharing capability allows engineers who have a problem they cannot resolve to request help from an expert who can analyze the trace file via StrataSync using applications such as JDViewer, JDFileViewer, JDPowerMeter, etc. from anywhere without having to be at the instrument, helping resolve problems even faster.

Setting up Internet connection

Your JD780A series instrument must have Internet access to be able to connect to the StrataSync. You can set up for wireline or wireless Ethernet network connection. You can also use your mobile device's data network such as the Bluetooth tethering on an Android-based smartphone and the Personal Hotspot on an iOS-based smartphone. If you want to share your mobile's data network, you need to connect your instrument to your mobile device.

- 1. Connect one of the Parani-UD100 Bluetooth adapters to the USB port of your JD780A series.
- 2. Turn on Bluetooth on your mobile device, and then activate its tethering or hotspot.
 - On Android mobile devices:
 - a Go to Settings > Connections > Bluetooth.
 - **b** Check the box for **Visible to all nearby Bluetooth devices** to make your mobile device discoverable by your instrument.
 - **c** Go to Settings > More networks > Tethering and portable hotspot.
 - **d** Check the box for **Bluetooth tethering** to enable sharing your mobile device's Internet connection with your instrument.
 - On iOS mobile devices:
 - a Go to Settings > Bluetooth.
 - b Turn on Bluetooth.
 - c Go to Settings > Personal Hotspot.
 - d Turn on Personal Hotspot to make your mobile device discoverable by your instrument and enable sharing your mobile device's Internet connection with your instrument.
- 3. On your instrument, press the **SYSTEM** hot key.
- 4. Select System Configuration > Remote Interface > Bluetooth > Connect.
- Press the Scan soft key to discover your mobile device. You will find your mobile device from the list on the screen.
- **6.** Highlight your mobile device name from the list, and then press the **Select** soft key. A dialog box appears.
- 7. Tap the Connect button to pair and connect.
- 8. On your mobile device, enter 0000 in the PIN field, and then tap the OK button or Pair.

If the connection is successful, "(Paired & Connected)" appears next to the name of your mobile device on your instrument. If the connection is unsuccessful, repeat steps **6** and **7**.

9. Press the **PREV** hard key to return to the Bluetooth Information screen that displays the paired device and connected service including your CellAdvisor's IP Address.

NOTE

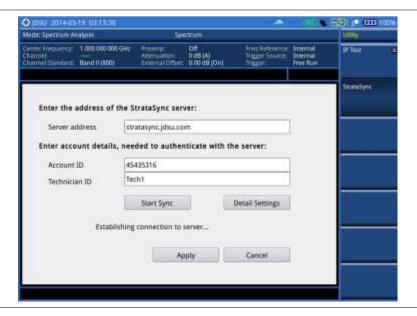
If you want to use the Web-based remote control described on page 53 using this Bluetooth tethering, record the IP address assigned to your JD780A series to have access to the instrument on your smartphone's Web browser.

Establishing a connection to StrataSync

Procedure

- 1. Press the SYSTEM hot key.
- Select More (1/2) > Utility > StrataSync.
 The StrataSync setting window appears as shown in Figure 91.
- 3. Enter <server address> in the Server Address field for StrataSync. The server address at the time of this document production is "stratasync.viavisolutions.com", which may change.

NOTE


Viavi provides you with the information required to access StrataSync at your purchase of StrataSync, including the **Server Address**, **Account ID**, and **Port** number. See "JD780A Series Common Options" on page 642 for more information on available options.

- 4. Enter <account number> in the Account ID field.
- 5. Enter <technician number> in the Technician ID field.
- **6.** To set the port number and proxy server address, complete the following steps:
 - a. Tap the **Detail Settings** button. The input dialog box appears.
 - b. Enter <port number> in the Port field.
 - c. Enter proxy server address> in the Proxy Server address, if necessary.
 Contact your system administrator for your proxy server information.
 - d. Tap the Apply button to save and exit.
- 7. Tap the Start Sync button.

Once successfully synchronized, the text "Successfully synchronized with server" appears and the StrataSync icon changes accordingly.

8. Tap the Apply button to exit.

Figure 3 StrataSync setting window

StrataSync status indicators

The StrataSync indication icons provide you with the connection and activity status.

Indicator	Description
<u></u>	Indicates that your instrument is idle to be connected and synchronized with the StrataSync server.
•	Indicates that your instrument is acquiring an authentication, synchronizing with the server, and sharing data.
₽	Indicates that your instrument is synchronized successfully.
*	Indicates that your instrument failed to synchronize with the StrataSync server or encountered an error.

Setting up 28 GHz downconverter

28 GHz Downconverter increases CellAdvisor RF frequency range from 27 GHz to 30 GHz targeting spectrum and interference analysis of 5G millimeter wave networks. It enalbes to down convert RF input frequencies of 27 to 30 GHz into anintermediate frequency (IF) output to 3.6 GHz. This functionality is only enabled when your firmware version is 3.080xxx or above. Make sure the unit should be connected to CellAdivisor before measurement. Refer to 28 GHz Downconverter Quick Start Guide for more details.

Establishing a connection to 28 GHz downconverter

- 1. Press the SYSTEM hot key.
- 2. Select More (1/2) > Utility > 28G Down Converter.
- 3. Press Connect soft key or Connect button on the screen to connect 28G DC.

- Wait until it boots up.
 Once connected, the connection manager window automatically shuts down and FREQ/DISTsetting screen is displyed.
- 5. Press **Shut down** soft key or **Shut down** button on the screen to disconnect 28G DC.
- Press the Exit soft key or Exit button button on the screen to exit from the connection manager window.

The soft key and hard key are not available when the 28 GHz Downconverter connection manager window is displayed.

Figure 4 28 GHz Downconverter Connection Manager window

Setting communication

JD780A series provides several methods for you to connect your instrument with application software or other instruments and devices.

Configuring Ethernet

You can configure a network to connect your JD780A series to a computer installed with Viavi software applications such as JDViewer or JDRemote via Ethernet. JD780A series supports both IPv4 and IPv6 protocols.

Setting for IPv4 protocol

- 1. Press the SYSTEM hot key.
- Select System Configuration > Ethernet Config > IPv4.
 The Ethernet Configuration box appears.
- 3. Do one of the following:
 - To enable automatic IP addressing, toggle the Mode soft key and select DHCP.

- To manually assign fixed IP addresses, complete the following steps:
 - a. Toggle the Mode soft key and select Static.
 - b. Press the IP Address soft key.
 - **c.** Type in an address including dots in the user input field.
 - d. Press the ENTER hard key or Enter soft key.
 - e. Press the Subnet Mask soft key and repeat steps c-d.
 - f. Press the Gateway soft key and repeat steps c-d.
 - g. Press the DNS soft key and repeat steps c-d.
- **4.** Press the **Apply** soft key to complete the network configuration. The message "Applying Network Info..." appears.

Setting for IPv6 protocol

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select System Configuration > Ethernet Config > IPv6.
- 3. Do one of the following:
 - To enable automatic IP addressing, toggle the Mode soft key and select Auto.
 - To manually assign fixed IP addresses, complete the following steps:
 - **a.** Toggle the **Mode** soft key and select **Static**. The Ethernet Configuration box appears.
 - b. Press the IP Address soft key.
 - c. Type in an address including colons using the on-screen keyboard.
 - d. Press the Apply soft key to complete the input.
 - e. Press the Subnet Prefix Length soft key.
 - f. Enter a length value using the numeric keys, and then press the **Enter** soft key.
 - g. Press the Gateway soft key and repeat steps c-d.
 - h. Press the DNS soft key and repeat steps c-d.
- 4. Press the ESC hard key, and then make sure to press the Apply soft key in the IPv6 menu bar in order to apply and complete the network configuration. The message "Applying Network Info..." appears.

Setting for JDViewer and JDRemote

The **App SW** is set by default to make it easy to connect your instrument to JDViewer, JDRemote, JDMapCreator, and other applications. After using other remote interfaces such as SCPI, LMF, and USBTMC, it is recommended that you set the LAN and USB settings back to App SW.

- 1. Press the SYSTEM hot key.
- 2. Press the System Configuration soft key.
- 3. Press the Remote Interface soft key and then do the following:
 - Select the LAN soft key and then press the App SW soft key.
 - Select the USB soft key and then press the App SW soft key.

Setting USBTMC mode

The USB Test & Measurement Class (USBTMC) is a standard for programmatic control of USB-based test instruments that defines protocols used to send and receive messages. If you want to use the USBTMC protocol to communicate with the instrument remotely, you can turn this TMC Mode on.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select System Configuration > Remote Interface > USB.
- **3.** Press the **USBTMC** soft key. The confirmation dialog box appears.
- 4. Press the **USBTMC** soft key again to confirm the mode change and reboot the instrument.

After using the USBTMC mode, you may want to set this setting back to **App SW** if you use JDViewer mainly for remote controlling your JD780A series.

Setting SCPI mode

You can use SCPI commands to control your JD780A series remotely.

Procedure

- 1. Press the SYSTEM hot key.
- 2. Select System Configuration > Remote Interface > LAN.
- 3. Press the SCPI soft key.

After using the SCPI mode, you may want to set this setting back to **App SW** if you use JDViewer or JDRemote mainly.

Configuring LMF setting

The Local Maintenance Facility (LMF) setting is used in order to perform TX Calibration and TX Audit on Motorola's CDMA/EV-DO BTS in the RF Power Meter mode. See "Appendix F – Motorola CDMA/EV-DO LMF" on page 633 for more information.

Enabling Bluetooth connection

If your JD780A series has the Bluetooth Connectivity option installed with a license, you can use the Bluetooth mode to enable communicate between your instrument and your computer with application software such as JDRemote and JDViewer or to transfer files to a Bluetooth storage device. See "Appendix G – Bluetooth connection" on page 635 for more information.

Enabling Wi-Fi connection

Wi-Fi Connectivity is an optional feature that you can activate by installing a purchased license on your JD780A series. After plugging a USB Wi-Fi LAN card using Realtek NICs into the instrument, you can join a wireless network from the instrument so that you can have access to StrataSync or control the instrument from the Web-based remote control on a computer.

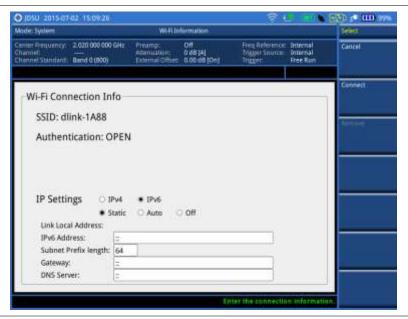
Procedure

Plug in your USB Wi-Fi LAN card to the USB Host port of the JD780A series.
 The Wi-Fi LAN card is detected and the white Wi-Fi indicator appears on the screen to indicate it.

NOTE

CellAdvisor JD780A series is compatible only with a USB LAN card that uses Realtek NICs (RTL8188eu, RTL8192cu, and RTL8812au).

- 2. Press the SYSTEM hot key.
- 3. Select System Configuration > Remote Interface > Wi-Fi.
 The Wi-Fi mode is turned on automatically. After searching nearby networks, the instrument displays a list of networks.
- 4. To select a network to join, complete the following steps:
 - a. To refresh the networks list, press the Scan soft key. The instrument displays all detected networks as Detected and previously connected ones as Saved.
 - **b.** Highlight a network to join by using the arrow keys or rotary knob.
 - Press the Select soft key.
 The Wi-Fi Connection Info window appears for entries. Figure 5 is an example.
- 5. To enter a user identity and a password for the network, complete the following steps:
 - **a.** Tap on the input box for **Identity**, if required. The on-screen keyboard appears.
 - **b.** Type your identity, and then press the **Apply** soft key.
 - c. Tap on the input box for Password, if required. The on-screen keyboard appears.
 - **d.** Type a correct password that must be at least eight characters long.
 - e. Press the Apply soft key.
 - f. To view the password exactly as entered, tap the checkbox for Show Password to enable it.
- 6. To configure IP network settings, complete the following steps:
 - a. Select the TCP/IP protocol option from the choices: IPv4 and IPv6. Sub-selection options change according to your selection. If the selected network supports IPv6, you can configure IP settings for it.
 - **b.** Do one of the following:
 - To enable automatic IP addressing, select **DHCP** for IPv4 or **Auto** for IPv6.
 It is recommended that you select DHCP unless otherwise you know static IP addresses.
 - To manually assign fixed IP addresses, select **Static**, and then enter addresses as required for IPv4 or IPv6. If you do not have required information, contact your network administrator.
 - To disable the IPv6 protocol, select Off.
- 7. Press the Connect soft key.


Once connected, the Wi-Fi indicator turns to green and the Wi-Fi Connection Info window is updated with information about the connected network including SSID, status, authentication type, encryption method, BSSID, and assigned IP address(es). If you have selected **Auto** for IPv6 in step **6**, you will have Link-Local, Stateless, and Stateful instead of IP Address. If you see the green Wi-Fi indication with a red exclamation mark in the center, it means that an IP address has not been assigned.

NOTE

It is important to record the IP address(es) if you want to use the Web Remote on your computer.

- **8.** To disconnect the currently connected network, select the network and then press the **Disconnect** soft key.
- To forget the selected network and delete it permanently from the list, press the Remove soft key.

Figure 5 Example of Wi-Fi connection information window

Enabling Web-based remote control

If your JD780A series has the Wi-Fi Connectivity option installed with a license, you can enable this Web Remote feature to control your instrument from most of Web browsers including Windows Internet Explorer (IE) 6 and later, Firefox, Chrome, Safari, and Android native browser in an accessible network. You can also use this feature to allow other users to access your instrument remotely and share the live screen concurrently with up to 10 clients in the network.

Procedure

- 1. Press the SYSTEM hot kev.
- 2. To get the IP address assigned to your instrument, do one of the following:
 - For wireline LAN connection:
 - a. Select System Configuration > Ethernet Config > IPv4 or IPv6.
 - b. Toggle the Mode soft key and select DHCP or Auto for automatic IP addressing.
 - Press the Apply soft key.
 The Ethernet Configuration box is updated with assigned IP address(es).
 - **d.** Record the IP address(es). For IPv6 Auto, you will see Link-Local, Stateless, and Stateful instead of IP Address.

NOTE

If your network does not support the automatic IP addressing, contact your network administrator to get a fixed IP address assigned to your instrument.

- For wireless LAN connection:
 - a. Select System Configuration > Remote Interface > Wi-Fi.
 - **b.** Select the currently connected network from the list, and then press the **Select** soft key.
 - c. Record the IP address displayed at the bottom.
- For Bluetooth tethering on an Android-based smartphone or Personal Hotspot on an iOS-based smartphone:
 - a. Select System Configuration > Remote Interface > Bluetooth.
 - **b.** Record the IP address assigned to your instrument under Connected Service.

- 3. Press the SYSTEM hot key again.
- 4. Select System Configuration > Remote Interface.
- 5. Toggle the Web Remote soft key and select On to enable it.
- **6.** Open a Web browser on your computer or mobile device and then enter the IP address you have obtained in step **2**, depending on the TCP/IP protocol. Examples are the following:
 - IPv4: 10.82.26.254 (put the entire the address including dots in the URL bar)
 - IPv6: [fe80::21b:22ff:fea1:924a] (make sure to add the brackets "[" and "]" and put the
 entire address including colons in the URL bar)

Your instrument's live screen appears on the Web browser as shown like Figure 6 or Figure 7.

NOTE

The IPv6 protocol is supported on the operation system "Windows Vista" and later.

Figure 6 Example of Web remote on iPhone

Figure 7 Example of Web remote on Chrome

Managing help manual

JD780A series contains the JD780A series help manual by default. The name of default help menual is "**System Help**". You can browse the manual instantly from any screen by pressing the *HELP* hot key.

Adding other help manual

You can add other help manuals to your instrument by importing other help manuals from a USB memory drive.

Procedure

- 1. Insert a USB memory drive that contains the help files (.html).
- 2. Press the HELP hot key.
- Select Help manager > Import Help Files.
 The list of help files appears on the import help files window.
- 4. Select a folder you want to add.

You cannot copy the "Internal" folder.

Tap the Copy button to complete.
 The text "Copy Completed" appears. The folder or file is copied under the User_Help folder in the Select Help. See Figure 8.

The maximum storage size for user help is 10M. If the file exceeds the remained storage space, the text "Not enough space left" appears.

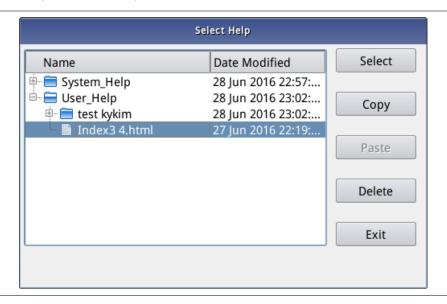
Viewing help manual

You can select a help manual to view on your instrument.

Procedure

- 1. Press the HELP hot key.
- 2. Select Help manager > Select Help.

 The list of help files appears on the select help with


The list of help files appears on the select help window.

- **3.** Select a folder or a help file you want to view, and then tap the **Select** button.
- Press the Home soft key to view the selected help manual.
 The selected help manual appears.
- To copy a folder or help file in the User_Help folder, select a foler or a help file, and then tap Copy > Paste.
- 6. To delete a folder or a help file, select a folder or a help file, and then tap **Delete > Yes**.

NOTE

You cannot delet the User_Help folder.

Figure 8 Example of select help screen

Analyzing Measurement Results

This chapter provides instructions on how to use JD780A series' capabilities for measurement analysis. Topics discussed in this chapter are as follows:

Using marker	58
Using peak search	59

Using marker

Marker is used to get the information about a specific trace. Six markers can be set on the display and each marker can be used independently. The X and Y coordinates of the trace are displayed when the marker is placed on any position of the trace. The position displaying the marker's X and Y coordinates may be slightly different for each measurement mode and refer to the description of each measurement. There are three different marker types available: Normal, Delta, and Delta pair. Marker position can be set manually by entering numeric values (frequency) when one of the marker types is selected.

- Select Marker: Selects an active marker whose position can be changed with the rotary knob or the arrow keys. The assigned number of the active marker is displayed in the Select Marker menu box and the active marker number is also displayed right next to the active marker on the trace when the Marker View is set to On.
- Marker View: Displays the selected marker on the screen or hides it. When the Marker View is turned off and then on again in the same measurement mode, markers appear at the previous positions. If a measurement mode is changed, markers are not restored to their previous positions.
- Normal: This Normal marker type provides the reading of a marker position on the trace along with the marker number between one and six.
- Delta: This Delta marker type is associated with a Normal marker. A Normal marker must be set before a Delta marker is set. When the Delta marker is set, the position set by the Delta marker becomes the reference position of the Normal marker and the marker's X and Y values displays the difference compared with the Delta marker.
- Delta Pair: This Delta Pair marker type is associated with a Normal marker. A Normal marker must be set before a Delta Pair marker is set. When the Delta Pair marker is set, the position set by the Delta Pair marker becomes the reference position of the Normal marker and the marker's X and Y values displays the difference compared with the Delta Pair marker. The reference position will be varied in accordance with trace change.
- Marker All Off: Turns all the markers the screen off. When the Marker View is selected for those markers, the instrument displays those markers back at the previous position. If a measurement mode is changed, current settings are not restored.
- Marker →: Sets the X coordinate of the active marker as selected.
 - Marker→Center: Sets the frequency of the active marker to the center frequency of spectrum analyzer.
 - Marker→Start: Sets the frequency of the active marker to the start frequency of spectrum analyzer.
 - Marker→Stop: Sets the frequency of the active marker to the stop frequency of spectrum analyzer.
- Frequency Count: This Frequency Count is used when a highly accurate reading of the frequency is needed for the active marker on the signal. The measurement sweeps get significantly slower because the instrument runs the measurement of the signal peak with 1 Hz resolution in background. Toggle this key between On and Off to enable or disable the frequency count function for the selected marker.
- Noise Marker: This Noise Marker is used to measure a noise adjacent to a signal by averaging several data points to calculate the readout for the Noise Marker as if making a measurement using a 1 Hz bandwidth. Toggle this key between **On** and **Off** to enable or

disable the noise marker function for the selected active marker.

NOTE

Frequency Count and Noise Marker functions are used only in the Spectrum Analyzer mode.

Using peak search

Peak search

Each time the Peak Search soft key is pressed, the active marker is positioned at the highest peak of the trace.

- **Peak Search:** Moves the active marker to the highest peak of the trace.
- **Next Peak:** Moves the active marker to the second highest peak of the trace.
- **Next Peak Right:** Moves the active marker to the highest peak to the right of its current position.
- Next Peak Left: Moves the active marker to the highest peak to the left of its current position.
- Min Search: Moves the active marker to the lowest peak of the trace.
- Always Peak: When the Always Peak is set to On, the instrument moves the active marker automatically to the highest peak of the trace every time the trace is refreshed.

Using Spectrum Analyzer

This chapter provides instructions for using the Spectrum Analyzer function. Topics discussed in this chapter are as follows:

Introduction	61
Display overview	61
Connecting a cable	62
Selecting measurement mode	63
Conducting spectrum measurements	72
Conducting RF measurements	76

Introduction

The advantage of using the Spectrum Analyzer is easy to verify the presence of unwanted signals such as spurious and harmonics, which are normally very hard to identify in time domain analysis.

Performance assurance in wireless communication systems includes the observation of the out-of-band signal characteristics in order to identify the presence of harmonic signals. Harmonic signals of a carrier may interfere with other signals far out of the transmission band, or harmonic signals from other transmitter may interfere with in band signals affecting the spectral integrity.

In these days when wide variety of wireless communication services are provided in frequency bands assigned very closely to each other, it is critical to ensure that each communication service is carried out within their assigned frequency band minimizing interference with adjacent frequency bands. The Adjacent Channel Power Ratio (ACPR) characteristic of a power amplifier or other RF components is an important factor in evaluating the system performance.

The JD780A series is the optimal solution to perform following measurements:

- Spectrum Analysis
 - Spectrum
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - Adjacent Channel Power (ACP)
 - Multi-ACP
 - Spurious Emissions
 - AM/FM Audio Demodulation
 - Field Strength
 - Route Map
 - Dual Spectrum
 - PIM Detection (Single and Multiple Carriers): not supported when 28 GHz downconverter is connected.
 - Total Harmonic Distortion (THD): not supported when 28 GHz downconverter is connected.

Display overview

Figure 9 provides overview of each segment of the measurement screen.

System settings, global positioning information, and indicators Measurement mode Input settings User input Pass/fail 20.000000 MHz pan Frequency: 20,000 000 MH field indicator Zero Span Measurement settings Screen tast Span menus Trace legend 01: 4.200 000 MHz / -4.46 dB Marker table Measurement result

Figure 9 Spectrum measurement screen

Connecting a cable

There are two ways that you can make a connection of your instrument and the base station to be tested: direct or indirect.

Procedure

To make a direct connection:

1. Connect the **Spectrum Analyzer RF In** port of the JD780A series and the PA output port of BTS as shown in Figure 10.

To make an indirect connection:

Connect the Spectrum Analyzer RF In port of the JD780A series and the monitor (test) port of BTS as shown in Figure 11.

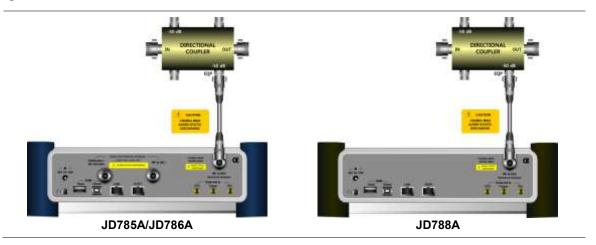



Figure 11 Indirect connection

CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Selecting measurement mode

- 1. Press the MODE hard key.
- 2. Press the Spectrum Analyzer soft key. The Measure Off mode is selected by default.
- To select a measurement mode, press the MEASURE hot key and then select the measurement mode:
 - Channel Power
 - Occupied BW
 - Spectrum Emission Mask
 - Adjacent Channel Power
 - Multi-ACP
 - Spurious Emissions
 - AM/FM Audio Demod
 - Field Strength
 - Route Map
 - Dual Spectrum
 - PIM Detection > Single Carrier or Multiple Carrier: not supported when 28 GHz downconverter is connected.
 - Total Harmonic Distortion: not supported when 28 GHz downconverter is connected.

Configuring test parameters

Setting frequency

You need to set the frequency range to be measured with either the center frequency/span or the start/stop frequencies. You can also set the frequency with the channel number and span.

Procedure

To set the center frequency and span:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Center Frequency soft key.
- 4. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** Press the **Span** soft key, and then do one of the following:
 - To set the span manually, select Span, enter a value, and then select the unit.
 - To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

NOTE

The **Zero Span** option is available only in the Spectrum mode. If you have selected **Zero Span**, select **TRIGGER** > **Free Run**, **External**, **GPS**, **Video**, or **Display Position**.

To set the start and stop frequencies:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Start Frequency soft key.
- 4. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- 6. Press the Stop Frequency soft key.
- 7. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 8. Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number and span:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- **3.** To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - **b.** Select the band to be measured by using the rotary knob, the arrow keys, or the **Page Up/Page Down** soft keys.
 - c. Press the **Select** soft key or the rotary knob to confirm the selection.
- Toggle the Link soft key to select the sweep direction and select Fwd for forward or Rev for reverse.
- **5.** To set the channel number, complete the following steps:
 - a. Press the Channel Number soft key.

- **b.** Enter a value by using the numeric keys.
- c. Press the Enter soft key or ENTER hard key to complete the entry. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- **6.** To set the span, complete the following steps:
 - a. Press the Span soft key.
 - **b.** Select the span option, from the following choices:
 - To set the span manually, select Span, enter a value, and then select the unit.
 - To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

The **Zero Span** option is available only in the Spectrum mode. If you have selected **Zero Span**, select **TRIGGER** > **Free Run**, **External**, **GPS**, **Video**, or **Display Position**.

Optional. To define the amount of frequency increment for the rotary knob:

- 1. Press the Frequency Step soft key, if the Freq is selected.
- 2. Enter a value by using the numeric keys.
- 3. Press the unit: GHz, MHz, kHz, or Hz.

Optional. To define the amount of channel increment for the rotary knob:

- 1. Press the Channel Step soft key, if the Channel is selected.
- 2. Enter a value by using the numeric keys.
- 3. Press the Enter soft key.

NOTE

This setting is not used in the Spurious Emissions mode.

Setting frequency for 28 GHz downconverter

Once the CellAdvisor is connect to 28 GHz downconverter, the center frequency is automatically set to 28 GHz. You can measure the center frequency ranged from 27 to 30 GHz with the span or the start/stop frequencies. You cannot set the frequency with the channel number and span when the 28 GHz downconverter is in operation.

Procedure

To set the center frequency and span:

- 1. Press the FREQ/DIST hard key.
- 2. Press the Center Frequency soft key.
- 3. Enter a value from 27 to 30 GHz by using the numeric keys, the rotary knob, or the arrow keys.
- 4. Select the unit as GHz among the 4 options: GHz, MHz, kHz, or Hz.
- **5.** Press the **Span** soft key, and then do one of the following:
 - To set the span manually, select Span, enter a value, and then select the unit.
 - To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

NOTE

The **Zero Span** option is available only in the Spectrum mode. If you have selected **Zero Span**, select **TRIGGER** > **Free Run**, **External**, **GPS**, **Video**, or **Display Position**.

To set the start and stop frequencies:

- 1. Press the FREQ/DIST hard key.
- 2. Press the Start Frequency soft key.
- 3. Enter a value from 27 to 30 GHz by using the numeric keys, the rotary knob, or the arrow keys.
- 4. Select the unit as GHz among the 4 options: GHz, MHz, kHz, or Hz.
- 5. Press the Stop Frequency soft key.
- 6. Enter a value from 27 to 30 GHz by using the numeric keys, the rotary knob, or the arrow keys.
- 7. Select the unit as GHz among the 4 options: GHz, MHz, kHz, or Hz.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- Press the Auto Scale soft key.
 Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference level on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the unit soft key or the ENTER hard key.
- **3.** To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.

To set the internal attenuation value (only when 28 GHz downconverter is in operation):

- 1 Press the AMP/SCALE hard key.
- 2 Press Attenuation Value Internal soft key.
- 3 Enter a value in fives by using the numeric keys.
- 4 Press the dB soft key or the ENTER hard key.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation (Internal) > Manual.
 - b. Press the Attenuation Value (Internal) soft key to set the level.
 - **c.** Enter a value between 0 and 55 in fives by using the numeric keys.
 - d. Press the dB soft key or the ENTER hard key.
- To couple the input attenuator's level with your reference level setting, select Attenuation (Internal) > Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

The **Attenuation Value Internal** and **Attenuation Internal** menus are available when the 28 GHz downconverter is in operation.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W.
 The scale unit on the screen changes accordingly.

NOTE

For the Field Strength mode, the units change to dBµV/m, dBmV/m, dBV/m, Volt/m, Watt/m^2, and dBm/m^2.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamplifier so that amplitude readings show the value at the input connector.

Procedure

- Press the AMP/SCALE hard key.
- 2. Toggle the Preamp soft key and select On or Off as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

Pre-amplifier for 28 GHz downconverter

You can turn the external pre-amplifier on to correct and compensate for the gain of the preamplifier so that amplitude readings show the value at the input connector. The Preamp External is for 28 GHz downconverter, and the Preamp Internal is for CellAdvisor.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Press the Preamp soft key.
- 3. Toggle the Preamp Internal soft key and select On or Off as needed.
- 4. Toggle the Preamp External soft key and select On or Off as needed.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes

Procedure

To set the external offset:

1. Press the AMP/SCALE hard key.

- 2. Toggle the External Offset soft key and select On.
- 3. Enter a value by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

NOTE

This setting is not used in the Field Strength mode.

Scale per division

You can use the **Scale/Div** feature available for the spectrum measurement screen. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- 3. Enter a value between 1 and 20 by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

Setting bandwidth

You can manually set the Resolution Bandwidth (RBW), Video Bandwidth (VBW), and the proportional VBW based on the designated RBW. Selecting **Auto** changes the value to correspond to your frequency span setting for RBW and to the current RBW and VBW/RBW settings for VBW.

Procedure

To automatically set the RBW and VBW to your selected VBW/RBW ratio:

- 1. Press the BW/AVG hard key.
- 2. Press the **VBW/RBW** soft key to set the proportional VBW based on the designated RBW. Table 9 shows the ratio example for 30 kHz RBW.
- 3. Select the ratio: 1, 0.3, 0.1, 0.03, 0.01, or 0.003.
- 4. Toggle the **RBW** soft key and select **Auto**.
- **5.** Toggle the **VBW** soft key and select **Auto**.

The RBW or VBW value on the screen changes accordingly based on the span.

To manually set the RBW or VBW to your selected VBW/RBW ratio:

- 1. Press the BW/AVG hard key.
- 2. Press the RBW soft key.
- 3. Enter a value between 1 Hz to 3 MHz in 1-3 sequence by using the numeric keys.
- 4. Select the unit: MHz, kHz, or Hz.

The RBW setting automatically changes to Manual.

- 5. Press the VBW soft key.
- 6. Enter a value by using the numeric keys.
- Select the unit: MHz, kHz, or Hz. The VBW setting automatically changes to Manual.

The RBW or VBW value on the screen changes accordingly.

NOTE

This setting is not used in the Spurious Emissions mode.

Table 9 VBW/RBW ratio example

RBW	Ratio (VBW/RBW)	VBW
30 kHz	1:1	30 kHz
	1:0.3	10 kHz
	1:0.1	3 kHz
	1:0.03	1 kHz
	1:0.01	300 Hz
	1:0.003	100 Hz

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.
- **3.** Enter a value between 1 and 100 as needed by using the numeric keys.
- 4. Press the Enter soft key.

Setting sweep

The **SWEEP** hot key is used to set and control the sweep time, sweep mode, gated sweep settings, and gated sweep on or off.

Sweep time

You can set the sweep time automatically or manually. Manual setting allows you to set the sweep time beyond an automatic setting.

Procedure

1. Press the SWEEP hot key.

- **2.** Select the sweep time option, from the following choices:
 - To automatically set, toggle the Sweep Time soft key and select Auto.
 - To manually set, complete the following steps:
 - a. Press the Sweep Time soft key.
 - **b.** Enter a value by using the numeric keys.
 - Select the unit: Sec, mSec, or µSec.
 The sweep time mode automatically changes to Manual.

This setting is not used in the Spurious Emissions mode.

Sweep mode

The default settings of the sweep mode are **Continue** and **Normal** to sweep continuously at a normal speed for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1. Press the SWEEP hot key.
- 2. Toggle the **Sweep Mode** soft key and select **Single**. You can also use the **HOLD** hot key. The letter **HOLD** in red appears and the sweeping is paused.
- 3. Optional. Press the Sweep Once soft key to get a new measurement.
- 4. Optional. To speed up sweeping, press the Sweep Mode soft key and then select Fast.

Selecting **Sweep Mode > Fast** may reduce the measurement accuracy, but it is useful to identify the existence of interfering signals.

To return to the continuous sweep mode:

 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

This setting is not used in the in the Field Strength mode, the AM/FM Audio Demodulation mode, and the Route Map mode.

Gated sweep

You can configure the gated sweep settings with an internal or external trigger source. If you select **Gated Sweep Settings**, you can view the signal in time domain.

- 1. Press the SWEEP hot key.
- 2. Press the Gated Sweep Settings soft key.
- **3.** Optional. Adjust sweep time to allow enough time for a cycle by completing the following steps:
 - a. Press the Zero Span Time soft key.

- **b.** Enter a value by using the numeric keys.
- c. Select the unit: Sec, mSec, or µSec.
- **4.** Set the period, if using the internal trigger source, by doing one of the following:
 - To select the preset period, complete the following steps:
 - a. Toggle the Period soft key and select StdSignal.
 - Press the StdSignal soft key, and then select the period: GSM (4.615 ms), WCDMA (10 ms), LTE (10 ms), EV-DO (5 ms), TD-SCDMA (5 ms), or WiMAX (10 ms).
 - To manually set the period, complete the following steps:
 - a. Toggle the Period soft key and select Manual.
 - **b.** Press the **Period** soft key to enter the amount of time.
 - c. Enter a value by using the numeric keys.
 - d. Select the unit: Sec, mSec, or µSec.
- **5.** Press the *TRIGGER* hot key, and then do one of the following:
 - Select External for an external trigger source.
 - Select Video or Display Position for the internal trigger source.
- **6.** Press the **PREV** hard key to continue setting the gated sweep.
- **7.** Set the gate delay by completing the following steps:
 - a. Press the Gate Delay soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Select the unit: Sec, mSec, or μ Sec.
- **8.** Set the gate length by completing the following steps:
 - a. Press the Gate Length soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Select the unit: Sec, mSec, or µSec.
- **9.** Press the **PREV** hard key to enable gated sweeping.
- 10. Toggle the Gated Sweep soft key and select On.

This setting is not used in the in the Spurious Emissions mode, the Field Strength mode, and the Route Map mode.

Using RF source

You can turn the RF Source feature on to provide different power levels as like using a CW signal generator. Note that this is not supported when the 28 GHz downconverter is in operation.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the RF Source soft key.
- 3. Press the **Frequency** soft key to set the frequency of the CW signal to be injected.
- 4. Enter a value, and then select the unit: GHz, MHz, kHz, or Hz.
- 5. Press the Power Level soft key to set the output level of the CW signal to be injected.
- 6. Enter a value, and then select the dBm soft key.

7. Toggle the **RF Source** soft key and select **On**.

Conducting spectrum measurements

If you have configured test parameters as described in the "Configuring test parameters" on page 63, your measurement is displayed on the screen as like the following example, Figure 12.

Figure 12 Spectrum measurement with spectrum analyzer

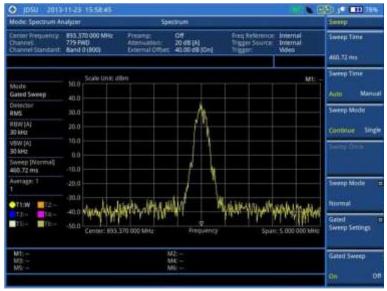


Figure 13 Spectrum measurement with spectrum analyzer (on 28 GHz downconverter)

Setting trace

You can display up to six traces on the measurement chart simultaneously.

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the **Select Trace** soft key, and then select the trace number: **T1**, **T2**, **T3**, **T4**, **T5**, or **T6**. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3. Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W

Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/3) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/3) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or the rotary knob.

4. To select the detection option, press the More (1/3) > Detectors, and then do one of the following:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- **5.** To detect Wi-Fi SSID in a user-specified bandwidth, complete the following steps and refer to Figure 14 below (this option is not available when the 28 GHz downconverter is in operation):
 - a. Connect the WiFi device to the USB Host port of the instrument.
 - b. Press More (1/3) > Wi-Fi Info.
 - c. Toggle the Wi-Fi Info soft key and select On.
 - d. Press the FREQ/DIST hard key.
 - e. Press the Center Frequency soft key.
 - **f.** Enter a value using the numeric keys. You can also turn the rotary knob to change the value.
- **6.** Optional. Press the **More (1/3) > Trace Info** soft key, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or **None** to hide the information display.
- 7. Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

NOTE

Wi-Fi SSID display is only enabled when the mesure mode is set to spectrum and channel power and the center frequency needs to be set as desired.

NOTE

To be able to load a trace, the trace to be overlaid must be saved in the same measurement mode and frequency setting as the current measurement.

Figure 14 Wi-Fi SSID display with spectrum analyzer

Setting limit

Procedure

To use the display line:

- 1. Press the LIMIT hot key.
- 2. Press the Display Line soft key for a reference line.
- 3. Enter a value, and then press the dBm unit soft key.
- Toggle the Display Line soft key between On and Off to display and dismiss the reference line.
 The straight line appears across the screen to be used as a visual reference only.

To display the multiple segment line:

- 1. Press the *LIMIT* hot key.
- 2. Press the **Multi Segment Line** soft key for Pass/Fail indication.
- 3. Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- Set the number of segments for the selected upper or lower limit line. You can set up to 50 segments.
 - a. Press the # of Line soft key.
 - **b.** Enter a value between 1 and 50 by using the numeric keys.
 - c. Press the Enter soft key.
- Press the Autoset soft key to let the instrument set the limit for each segment and display the line.
- **6.** Optional. To move the limit line, complete the following steps:
 - a. Select Limit Up/Down or Limit Left/Right.
 - **b.** Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7. Optional. To edit the segment properties, complete the following steps:
 - a. Press the Edit Limit soft key.
 - b. Press the **Move** soft key and then turn the rotary knob to select the segment to edit.

- **c.** Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the **Line** soft key and select **Off**.
 - To add a new point, press the Add Point soft key.
 - To delete the selected point, press the **Delete Point** soft key.
 - To change the position, press the Frequency or Amplitude soft key, and then turn the rotary knob to change the value as desired.
- 8. Optional. Go to **SAVE/LOAD** > **Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Setting frequency offset

If you want to check how much the actual frequency has been drifted from the input center frequency on your spectrum, you can set the center frequency as a frequency reference or an offset to view the drifted amount in frequency easily.

Procedure

- 1. Press the FREQ/DIST hard key.
- 2. Press the Frequency Offset soft key.
- **3.** Enter a value using the numeric keys. You can also turn the rotary knob to change the value. For example, if you have set the center frequency as 89.1 MHz and want to set it as a frequency reference, you need to enter "-89.1" in the user input field to view the center frequency as "0".
- **4.** Select the unit: **GHz**, **MHz**, **kHz**, or **Hz**. All frequency information on the display changes accordingly.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power, power spectral density, and Peak to Average Ratio (PAR) of the signal within the channel bandwidth.

Setting measure setup

After configuring test parameters, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Configure test parameters as described in the "Configuring test parameters" on page 63.
- 2. Press the **MEASURE SETUP** hot key.

- 3. Set the channel power measurement bandwidth to be measured:
 - a. Press the Integrated BW soft key.
 - **b.** Enter a bandwidth by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 4. Set the frequency range over which the instrument will sweep:
 - a. Press the Span soft key.
 - **b.** Enter a span frequency value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 5. Set the number of measurements to be averaged:
 - a. Press the Average soft key.
 - b. Enter a value between 1 and 100.
 - c. Press the Enter soft key.

Setting limit

- 1. Press the LIMIT hot key.
- 2. Press the Channel Power soft key to set the limit parameters.
- Toggle the Test Limits soft key between On and Off to enable or disable the Pass/Fail indication.
- 4. Set the upper threshold:
 - a. Press the High Limit soft key.
 - **b.** Enter a value for the upper limit.
 - c. Press the dBm unit soft key.
- 5. Set the lower threshold:
 - a. Press the Low Limit soft key.
 - **b.** Enter a value for the lower limit.
 - c. Press the dBm unit soft key.
- **6.** Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 15 Channel power measurement with spectrum analyzer

Channel power measurement result shows channel power and spectrum density in a user specified channel bandwidth. The peak to average ratio (PAR) is shown at the bottom of the screen as well. The shaded area on the display indicates the channel bandwidth.

Figure 16 Channel power measurement with spectrum analyzer (on 28 GHz downconverter)

Figure 17 Wi-Fi SSID display in channel power measurement with spectrum analyzer

Occupied bandwidth

The Occupied Bandwidth measures the percentage of the transmitted power within a specified bandwidth. The percentage is typically 99%.

Setting measure setup

After configuring test parameters, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Configure test parameters as described in the "Configuring test parameters" on page 63.
- 2. Press the MEASURE SETUP hot key.
- 3. Set the percentage of power within the bandwidth to be measured:
 - a. Press the Occupied BW % Power soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 4. Set the frequency range over which the instrument will sweep:
 - a. Press the Span soft key.
 - **b.** Enter a span frequency value by using the numeric keys. You can also use the rotary knob
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 5. Set the number of measurements to be averaged:
 - a. Press the Average soft key.
 - **b.** Enter a value between 1 and 100.
 - c. Press the Enter soft key.

Setting limit

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the Occupied BW soft key to set the limit parameters.
- 3. Toggle the Test Limits soft key between On and Off to enable or disable the Pass/Fail indication.
- 4. Set the upper threshold:
 - a. Press the High Limit soft key.
 - **b.** Enter a value for the upper limit.
 - c. Select the unit: MHz, kHz, or Hz.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Measurement example

The Occupied Bandwidth measurement shows both of power across the band and power bandwidth in a user specified percentage to determine the amount of spectrum used by a modulated signal. Occupied bandwidth is typically calculated as the bandwidth containing 99% of the transmitted power.

Figure 18 Occupied bandwidth measurement with spectrum analyzer

Figure 19 Occupied bandwidth measurement with spectrum analyzer (on 28 GHz

downconverter)

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement is to identify and determine the power level of outof-band spurious emission outside the necessary channel bandwidth and modulated signal. It measures the power ratio between in-band and adjacent channels. The JD780A series indicates either Pass or Fail based on the specified limit of the signal.

Setting measure setup

After configuring test parameters, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Configure test parameters as described in the "Configuring test parameters" on page 63.
- 2. Press the MEASURE SETUP hot key.
- 3. Set the main channel bandwidth to be measured:
 - a. Press the Main Channel BW soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: MHz, kHz, or Hz.
- 4. Set the frequency range over which the instrument will sweep:
 - a. Press the Span soft key.
 - b. Enter a span frequency value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 5. Set the number of measurements to be averaged:
 - a. Press the Average soft key.
 - **b.** Enter a value between 1 and 100.
 - c. Press the Enter soft key.

- **6.** To configure an offset, up to five, complete the following steps:
 - a. Press the Offset/Limit soft key.
 The Offset/Limit screen menu bar appears.
 - b. Press the Offset soft key, and then select the number for the active offset to configure.
 - **c.** Toggle the **Offset** soft key and select **On** to display or **Off** to hide the active offset.
 - d. Press the Offset Frequency soft key to set the center frequency of the offset.
 - e. Enter a value by using the numeric keys. You can also use the rotary knob.
 - f. Select the unit: MHz, kHz, or Hz.
 - g. Press the Measurement Bandwidth soft key to set the bandwidth for the selected offset.
 - **h.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - i. Select the unit: MHz, kHz, or Hz.
 - j. Toggle the Reference soft key between Relative and Absolute and select Relative or Absolute depending on how to use the reference.
- 7. To define the selected offset's limits for Pass/Fail indication, complete the following steps:
 - a. Press the **Start Offset Limit** soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the left.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the dB soft key.
 - **d.** Press the **Stop Offset Limit** soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the right.
 - e. Enter a value by using the numeric keys. You can also use the rotary knob.
 - f. Select the dB soft key.

Setting limit

- 1. Press the LIMIT hot key.
- 2. Press the Spectrum Emission Mask soft key.
- Toggle the Test Limits soft key between On and Off to enable or disable the Pass/Fail indication.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Figure 20 Spectrum emission mask measurement with spectrum analyzer

Figure 21 Spectrum emission mask measurement with spectrum analyzer (on 28 GHz downconverter)

Adjacent channel power (ACP)

The Adjacent Channel Power (ACP) is the power contained in a specified frequency channel bandwidth relative to the total carrier power. It may also be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band.

Setting measure setup

After configuring test parameters, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Configure test parameters as described in the "Configuring test parameters" on page 63.
- 2. Press the MEASURE SETUP hot key.
- 3. Set the main channel bandwidth to be measured:
 - a. Press the Main Channel BW soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: MHz, kHz, or Hz.
- 4. Set the frequency range over which the instrument will sweep:
 - a. Press the Span soft key.
 - **b.** Enter a span frequency value by using the numeric keys. You can also use the rotary knob
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 5. Set the number of measurements to be averaged:
 - a. Press the Average soft key.
 - **b.** Enter a value between 1 and 100.
 - c. Press the Enter soft key.
- **6.** To configure an offset, up to five, complete the following steps:
 - a. Press the Offset/Limit soft key.
 The Offset/Limit screen menu bar appears.
 - b. Press the Offset soft key, and then select the number for the active offset to configure.
 - c. Toggle the Offset soft key and select On to display or Off to hide the active offset.
 - **d.** Press the **Offset Frequency** soft key to set the center frequency of the offset.
 - e. Enter a value by using the numeric keys. You can also use the rotary knob.
 - f. Select the unit: MHz, kHz, or Hz.
 - g. Press the Integration Bandwidth soft key to set the bandwidth for the selected offset.
 - h. Enter a value by using the numeric keys. You can also use the rotary knob.
 - i. Select the unit: MHz, kHz, or Hz.
- 7. To define the selected offset's limits for Pass/Fail indication, complete the following steps:
 - a. Press the Lower soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the left.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the dBc soft key.
 - **d.** Press the **Upper** soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the right.
 - **e.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - f. Select the dBc soft key.

Setting limit

- 1. Press the LIMIT hot key.
- 2. Press the ACP soft key.

- Toggle the Test Limits soft key between On and Off to enable or disable the Pass/Fail indication.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Figure 22 Adjacent channel power measurement with spectrum analyzer

Figure 23 Adjacent channel power measurement with spectrum analyzer (on 28 GHz downconverter)

Multi-ACP

The Multi-ACP measurement is used to do multi-channel ACP testing. It helps you to measure ACP in multi-channel transmitting base station environment.

Setting measure setup

After configuring test parameters as described in "Configuring test parameters" on page 63, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Toggle the Unit soft key and select Freq or Channel.
 - For the frequency setting, complete the following steps:
 - a. Press the Lowest Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
 - d. Press the Highest Frequency soft key.
 - **e.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - f. Select the unit: GHz, MHz, kHz, or Hz.
 - For the channel setting, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 - b. Select the band to be measured by using the rotary knob or the Page p/Page Down soft keys.
 - **c.** Press the **Select** soft key or the rotary knob to confirm the selection.
 - d. Toggle the Link soft key to select the sweep direction and select Fwd or Rev as needed.
 - e. Press the Lowest Channel soft key.
 - f. Enter a value by using the numeric keys.
 - g. Press the Enter soft key or ENTER hard key to complete the entry. The instrument automatically displays the corresponding center frequency value for the selected channel number.
 - h. Press the Highest Channel soft key.
 - i. Enter a value by using the numeric keys.
 - j. Press the Enter soft key or ENTER hard key to complete the entry. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- 3. To set up ACP setting, press the ACP Settings soft key and then complete the following steps:
 - a. Press the Main Channel BW soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: MHz, kHz, or Hz.
 - **d.** Press the **Span** soft key to set the frequency range over which the instrument will sweep.
 - Enter a span frequency value by using the numeric keys. You can also use the rotary knob.
 - f. Select the unit: GHz, MHz, kHz, or Hz.
 - g. Press the Average soft key to set the number of measurement to be averaged:
 - h. Enter a value between 1 and 100.
 - Press the Enter soft key.

- 4. To configure an offset, up to five, complete the following steps:
 - a. Press the Offset/Limit soft key. The Offset/Limit screen menu bar appears.
 - b. Press the Offset soft key, and then select the number for the active offset to configure.
 - c. Toggle the Offset soft key and select On to display or Off to hide the active offset.
 - d. Press the Offset Frequency soft key to set the offset frequency.
 - e. Enter a value by using the numeric keys. You can also use the rotary knob.
 - f. Select the unit: MHz, kHz, or Hz.
 - g. Press the Integration Bandwidth soft key.
 - h. Enter a value by using the numeric keys. You can also use the rotary knob.
 - i. Select the unit: MHz, kHz, or Hz.
- 5. To define the selected offset's limits for Pass/Fail indication, complete the following steps:
 - a. Press the Lower soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the left.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the dBc soft key.
 - **d.** Press the **Upper** soft key to set the threshold for the power difference between the main channel bandwidth and the selected offset bandwidth on the right.
 - e. Enter a value by using the numeric keys. You can also use the rotary knob.
 - f. Select the dBc soft key.

Setting limit

- 1. Press the LIMIT hot key.
- 2. Press the Multi-ACP soft key.
- Toggle the Test Limits soft key between On and Off to enable or disable the Pass/Fail indication.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Figure 24 Multi-ACP measurement with spectrum analyzer

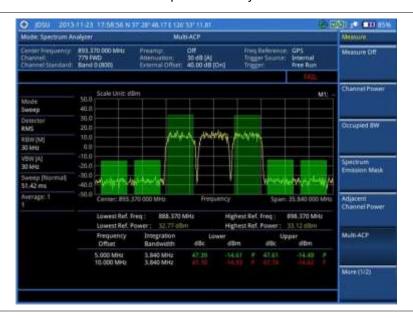



Figure 25 Multi-ACP measurement with spectrum analyzer (on 28 GHz downconverter)

Spurious emissions

The Spurious Emissions measurement is to identify or determine the power level of in-band or out-of-band spurious emissions within the necessary channel bandwidth and modulated signal. The JD780A series indicates either Pass or Fail based on the specified limit of the signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 63, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- To set up the range table and parameters, press the Range Table soft key and then complete the following steps:
 - a. Press the **Range** soft key, and then select the range number between **1** and **20** to add as a new or change the existing settings.
 - **b.** Do the following as desired:
 - Select Start Frequency, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.
 - c. Press the PREV hard key.
 - d. Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3. Toggle the Measure Type soft key between Examine and Full to select the measurement type.

NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 4. To set the number of measurements to be averaged, complete the following steps:
 - a. Press the Average soft key.
 - b. Enter a value between 1 and 100.
 - c. Press the Enter soft key.
- 5. To move the highlighted bar in the result table to other range, complete the following steps:
 - a. Press the Range soft key in the Measure Setup menu bar.
 - b. Enter a value between 1 and 20.
 - c. Press the Enter soft key.

Setting limit

- 1. Press the LIMIT hot key.
- 2. Press the Spurious Emissions soft key.
- Toggle the Test Limits soft key between On and Off to enable or disable the Pass/Fail indication.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Figure 26 Spurious emissions measurement with spectrum analyzer

Figure 27 Spurious emissions measurement with spectrum analyzer (on 28 GHz downconverter)

AM/FM audio demodulation

The AM/FM Audio Demodulator operates using the power received from radio waves and it serves as an alternative to identify interfering signals easily. The instrument sounds demodulated signals that can be heard through the built-in speaker or plugged-in headphones. You can hear the sound and identify interfering signals easily.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 63, you can set the measure setup to continue your measurement. The measurement settings can be saved

and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- Press the MEASURE SETUP hot key.
- Toggle the Audio Demod soft key between On and Off to turn the AM/FM audio demodulation on and off.
- Press the Demod at soft key, and then select the marker number for the frequency to be demodulated.

NOTE

You must set the marker(s) first by using the **MARKER** hard key as the AM/FM demodulator uses the marker position to demodulate. See "Using marker" on page 58 for more information.

- 4. Press the Demod Mode soft key, and then select the demodulation mode: AM, FM and CW.
- 5. Press the **Dwell Time** soft key, and then turn the rotary knob to set the demodulation interval between 1 and 20.
- **6.** Press the **Volume** soft key, and then turn the rotary knob to set the speaker volume.
- Toggle the Auto Gain soft key between On and Off to enable or disable the automatic gain feature to adjust the interval gain of the demodulator.
- **8.** Optional. You can use the Save On Event soft key to let the instrument automatically save measurement screen or result that falls outside the defined limit settings or the Fail indicator is on. You can also set to save the first event and hold the measurement or to save all the events continuously. See "Using save" on page 33 for more information.

Setting limit

You can show or hide the display line on the screen that is used as a visual reference only.

Procedure

To view the display line:

- 1. Press the LIMIT hot key.
- Press the Display Line soft key.
- 3. Enter a value, and then press the dBm unit soft key.
- Toggle the Display Line On/Off soft key and select On. The straight line appears on the screen.

To dismiss the display line:

- 1. Press the LIMIT hot key.
- 2. Toggle the Display Line On/Off soft key and select Off.

You can use the multiple segment limit line to set up different limits for different frequency ranges for Pass/Fail indication.

Procedure

To display the multiple segment line:

- 1. Press the LIMIT hot key.
- 2. Press the Multi Segment Line soft key.

- 3. Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- **4.** Set the number of segments for the selected upper or lower limit line. You can set up to 50 segments.
 - a. Press the # of Line soft key.
 - **b.** Enter a value between 1 and 50 by using the numeric keys.
 - c. Press the Enter soft key.
- Press the Autoset soft key to let the instrument set the limit for each segment and display the line.
- 6. Optional. To move the limit line, complete the following steps:
 - a. Select Limit Up/Down or Limit Left/Right.
 - b. Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7. Optional. To edit the segment properties, complete the following steps:
 - a. Press the Edit Limit soft key.
 - **b.** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - **c.** Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the Line soft key and select Off.
 - To add a new point, press the Add Point soft key.
 - To delete the selected point, press the **Delete Point** soft key.
 - To change the position, press the Frequency or Amplitude soft key, and then turn the rotary knob to change the value as desired.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings.
 See "Using save" on page 33 for more information.

Figure 28 AM/FM audio demodulation with spectrum analyzer

Figure 29 AM/FM audio demodulation with spectrum analyzer (on GHz downconverter)

Field strength meter

The Field Strength Meter measures the field strength over the frequency range of a connected antenna, which is known with its specific bandwidth and gain characteristics. A standard or user-defined antenna can be selected from the antenna list in the JD780A series.

Setting measure setup

Procedure

- 1. Connect an antenna to be used with your instrument.
- 2. Configure test parameters as described in the "Configuring test parameters" on page 63.
- 3. Press the **MEASURE SETUP** hot key, and then do one of the following:
 - To select the connected antenna from the list stored in the instrument:
 - a. Press the Antenna List soft key to view the standard and custom antennas. The antenna list window appears.
 - **b.** Select an antenna to be used for the field strength measurement by using the rotary knob, the arrow keys, or **Page Up/Page Down** soft keys.
 - c. Press the Select soft key.

NOTE

You can use the JDViewer to edit or define a custom antenna and add to this list.

- To edit the properties of the connected antenna:
 - a. Press the Antenna Start Frequency soft key.
 - Enter a value by using the numeric keys, and then select the unit: GHz, MHz, kHz, or Hz. You can also use the rotary knob.
 - c. Press the Antenna Stop Frequency soft key.
 - d. Enter a value by using the numeric keys, and then select the unit: GHz, MHz, kHz, or Hz. You can also use the rotary knob.
 - e. Press the Gain soft key to enter the gain information for the antenna.
 - f. Enter a value by using the numeric keys, and then select the Enter soft key.

Setting limit

You can show or hide the display line on the screen that is used as a visual reference only.

Procedure

To view the display line:

- 1. Press the LIMIT hot key.
- 2. Press the Display Line soft key.
- 3. Enter a value, and then press the dBm unit soft key.
- Toggle the Display Line On/Off soft key and select On. The straight line appears on the screen.

To dismiss the display line:

- 1. Press the LIMIT hot key.
- 2. Toggle the Display Line On/Off soft key and select Off.

You can use the multiple segment limit line to set up different limits for different frequency ranges for Pass/Fail indication.

Procedure

To display the multiple segment line:

- 1. Press the LIMIT hot key.
- 2. Press the Multi Segment Line soft key.
- 3. Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- Set the number of segments for the selected upper or lower limit line. You can set up to 50 segments.
 - a. Press the # of Line soft key.
 - **b.** Enter a value between 1 and 50 by using the numeric keys.
 - c. Press the Enter soft key.
- 5. Press the Autoset soft key to set and display the limit line for each segment automatically...
- 6. Optional. To move the limit line, complete the following steps:
 - a. Select Limit Up/Down or Limit Left/Right.
 - b. Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7. Optional. To edit the segment properties, complete the following steps:
 - a. Press the Edit Limit soft key.
 - b. Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - c. Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the Line soft key and select Off.
 - To add a new point, press the Add Point soft key.
 - To delete the selected point, press the **Delete Point** soft key.
 - To change the position, press the Frequency or Amplitude soft key, and then turn the rotary knob to change the value as desired.
- **8.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Figure 30 Field strength measurement with spectrum analyzer

Figure 31 Field strength measurement with spectrum analyzer (on 28 GHz downconverter)

Route map

The JD780A series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

If you have obtained user experience data through Viavi's ariesoGEO and generated raster data files from the application, you can load them onto your base map to help you troubleshoot problems easily and quickly.

Setting measure setup

Procedure

- 1. If required, connect a GPS receiver to your JD780A series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- Configure test parameters as described in the "Configuring test parameters" on page 63.
- 3. To load your map file, complete the following steps:
 - a. Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. . If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the Send to EQP menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- b. Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- Press the MEASURE SETUP hot key.
- 5. Press the Plot Point soft key, and then select the plot point option from the following choices:
 - To collect data/plot points automatically as you move around in a vehicle or outside, select
 GPS and then toggle the Screen Mode soft key between Map and Full.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

- To collect data/plot points manually without a GPS antenna, select **Position**.
- To collect data/plot points based on time, select **Time**.
 You do not need a GPS antenna as you would usually use this option indoor.
- 6. Press the Plot Item soft key, and then select the measurement option: RSSI or ACP.
- Optional. If ACP is selected, set the Main Channel BW and Offset/Limit (it is not supported when 28 GHz downconverter is in operation):
 - a. Press the Main Channel BW soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: MHz, kHz, or Hz.
 - d. Press the Offset/Limit soft key.
 - **e.** Toggle the **Offset** soft key and select **On** to display or **Off** to hide the offset.
 - f. Press the Integration Bandwidth soft key.
 - **g.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - h. Select the unit: MHz, kHz, or Hz.
 - i. Press the **Offset Frequency** soft key to set the offset frequency.
 - **j.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - k. Select the unit: MHz, kHz, or Hz.
 - I. Press the **Offset Limit** soft key to set the offset limit.
 - **m.** Enter a value by using the numeric keys. You can also use the rotary knob.

- n. Select the dB soft key.
- 8. Toggle the Plot soft key and select Start.
- **9.** Touch directly on the screen or press the **ENTER** hard key to collect data and plot points on the loaded map for the **Position** or **Time** setting.

NOTE

For the **Position** setting, you can change the direction of the route with screen touch or the arrow keys and the distance with the rotary knob. For the **Time** setting, the instrument interpolates points in between two enters on a straight dotted line. You can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 10. Toggle the Plot soft key and select Stop to stop plotting.
- **11.** Press the **SAVE/LOAD** hot key to save the result. See "Using save" on page 33 for more information.

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit

You can set the thresholds for the four different color indicators.

- 1. Press the LIMIT hot key.
- 2. Press the Excellent soft key to set its threshold.
- 3. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
- 4. Press the Very Good soft key to set its threshold.
- 5. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
- 6. Press the Good soft key to set its threshold.
- 7. Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
- 8. Press the Poor soft key to set its threshold.
- 9. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
- **10.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Figure 32 Route map measurement screen with GPS

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- 3. Do one of the following:
 - To zoom into an area of interest directly, complete the following steps:
 - **a.** Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
 - b. Press the Zoom In and Zoom Out soft keys, as you need, to decrease and increase the selected area.
 - c. Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
 - **d.** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.
 - To zoom into the center or zoom out from the center, complete the following steps:
 - a. Toggle the **Zoom to** soft key and select **Center**.
 - b. Press the Zoom In and Zoom Out soft keys, as you need, to zoom in and zoom out.
 - **c.** Move the zoomed-in area by using the four arrow keys, as you need.

Loading and displaying raster data

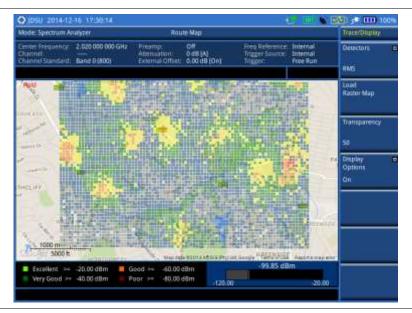
If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your route map to help you check the signal quality and the strength of interferences while driving toward the area of interest.

Procedure

- 1. Copy a set of raster data files into your USB memory drive, including the following:
 - ASCII: .tab, .asc, and .clr files
 - BIL: .tab, .hdr, .bil, and .clr files

NOTE

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.


- 2. Plug in the USB memory drive to your instrument.
- 3. Press the TRACE/DISPLAY hard key.
- Press the Load Raster Map soft key.
 The file explorer window appears.
- 5. Navigate to the raster file (.tab) you want to open, and then press the **Load** soft key. The raster image appears on top of your base map as shown in **Figure 33**.

NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **6.** To select the display option, complete the following steps:
 - a. Press the Display Options soft key.
 - b. Select the option you desire from the choices: On , Off, and Blink.
- 7. To adjust the transparency level of the image, complete the following steps:
 - a. Press the Transparency soft key.
 - **b.** Enter a value between **0** for opaque and **100** for clear.
 - c. Press the Enter soft key.

Figure 33 Raster image overlaid on the base map

Dual spectrum

The Dual Spectrum feature lets you view two spectrum measurements, both the Uplink and Downlink spectrum, simultaneously eliminating the need to swap between two screens back and forth.

Setting measure setup

Procedure

- 1. Configure test parameters as described in the "Configuring test parameters" on page 63.
- 2. Press the MEASURE SETUP hot key.
- Toggle the Active Window soft key between Top and Bottom to select the measurement window to configure or work on.

Measurement example

Figure 34 Dual spectrum measurement with spectrum analyzer

PIM detection (single and multiple carriers)

The Passive Intermodulation (PIM) Detection allows you to detect Uplink PIM across the full spectrum for any technology. When PIM is detected, the normal repair mode is to replace the offending cable and what you need to do is replacing the whole cable irrespective of the location of the fault. Note that this functionality is not supported when the 28 GHz downconverter is in operation.

Setting measure setup

- 1. Press the **MEASURE SETUP** hot key.
- 2. Connect cables as instructed on the screen.
- 3. Optional. To check any possibility of PIM existence in red color by calculation, complete the following steps:
 - a. Press the Calculated PIM soft key.
 - Press the Radio Band soft key for single carrier.
 There are Radio 1 Band and Radio 2 Band soft keys for multiple carriers.
 - c. Highlight a desired band and then press the Select soft key.
 - d. Press the Return soft key.

- 4. To set the uplink frequency to be measured, do one of the following:
 - To set the center frequency and span, complete the following steps:
 - a. Toggle the Unit soft key and select Freq.
 - b. Press the Uplink Center Frequency soft key.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Select the unit: GHz, MHz, kHz, or Hz.
 - e. Press the Uplink Span soft key.
 - **f.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - g. Select the unit: GHz, MHz, kHz, or Hz.
 - To set the channel number and span, complete the following steps:
 - a. Toggle the Unit soft key and select Channel.
 - b. Press the Channel Std soft key and select a desired band.
 - c. Press the Channel Number soft key.
 - d. Enter a value by using the numeric keys and then press the Enter soft key. The instrument automatically displays the corresponding center frequency value for the selected channel number.
 - e. Press the Uplink Span soft key.
 - f. Enter a value by using the numeric keys. You can also use the rotary knob.
 - g. Select the unit: GHz, MHz, kHz, or Hz.
- 5. Press the **Continue** soft key and follow the instructions on the screen.

Figure 35 PIM detection for single carrier

Figure 36 PIM detection for multiple carriers

Total Harmonic Distortion (THD)

The JD780A series can measure the Total Harmonic Distortion using spectrum analyzer. The Total Harmonic Distortion is defined as the ratio of RMS voltage of the harmonics to that of the fundamental component. This is accomplished by using a spectrum analyzer to obtain the level of each harmonic with peak detector. Note that this functionality is not supported when the 28 GHz downconverter is in operation.

Figure 37 Total harmonic distortion screen

Setting fundamental frequency

You need to set the fundamental frequency to measure the total harmonic distortion. Once you set up, it will automatically collect the harmonic outputs (up to the tenth harmonics as shown in **Figure 37**) from the spectrum analyzer and calculate the corresponding THD value (%) and the distortion

attenuation (dB).

Procedure

- Press the FREQ/DIST hard key.
- 2. Press the Fundamental Frequency soft key.
- 3. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- Select the unit: GHz, MHz, kHz, or Hz.
 The total harmonic distortion screen changes accordingly.

Setting reference level

You can set the reference level automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference level:

- 1. Press the AMP/SCALE hard key.
- Press the Auto Scale soft key.
 Each time you press this key, the Y-axis scale changes to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference value on the Y-axis manually, compete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Select the unit: dBM or -dBM, or press the ENTER hard key.
- 3. To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.
 - To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - **b.** Press the **Attenuation Value** soft key to set the level.
 - **c.** Enter a value in fives by using the numeric keys.
 - **d.** Press the **dB** soft key or the **ENTER** hard key.
 - To couple the input attenuator's level with your reference level setting, select **Attenuation** Couple.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- 2. Select the unit of the display scale: dBm, dBV, dBmV, $dB\mu V$, V, or W. The scale unit on the screen changes accordingly.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

1. Press the AMP/SCALE hard key.

2. Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the External offset on and manually set the external offset value.

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Press the External Offset soft key and select On.
 Enter a value by using the numeric keys between -120 to 120. You can also use the rotary knob or the arrow keys.
- 3. Press the dB soft key or the ENTER hard key.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Press the External Offset soft key and select Off.

Scale per division

You can use the **Scale/Div** feature available for the total harmonic distortion screen. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

- 1. Press the AMP/SCALE hard key.
- Select More (1/2) > Scale/Div.
 Enter a value between 1 and 20 by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 3. Press the dB soft key or the ENTER hard key.

4.

Using Interference Analyzer

This chapter provides instructions for using the Interference Analyzer function (option 011). Topics discussed in this chapter are as follows:

Introduction	.106
Display overview	.106
Connecting a cable	.107
Selecting measurement mode	.108
Configuring test parameters	.108
Conducting spectrum measurements	. 116
Conducting interference measurements	. 119
Setting limit for interference analyzer	138

Introduction

Interference is becoming more prevalent in the wireless community with the increasing number of transmitters coming on the air. Wireless service providers have traditionally used spectrum analyzers to monitor service channels, frequencies, and adjacent spectrum and to locate sources of interference. A spectrum analyzer can only show you an interfering signal and you require determining the source of the interference. To solve interference problems, you must understand the RF environment, know adjacent operating transmitters, and identify any new or unlicensed emitters.

Once a potential interfering signal is identified in the Spectrum Analyzer mode, you can monitor the signal further in the Interference Analyzer mode. JD780A series provides two different methodologies to identify and determine interference signals: Spectrogram and Received Signal Strength Indicator (RSSI). Locating the source of interference signal can be done with geographical information received from the built-in GPS receiver.

The JD780A series is extremely effective for locating and identifying periodic or intermittent RF interference. Interference signals derive from several kinds of licensed or unlicensed transmitters that cause dropped calls and poor service quality.

The JD780A series provides following measurements for interference analysis:

- Spectrum
- Spectrogram (Single/Dual)
- RSSI (Received Signal Strength Indicator)
- Interference Finder
- Spectrum Replayer
- Radar Chart

Using a set of the AntennaAdvisor Handle that holds a broadband directional antenna is mandatory in the Rader Chart mode and its built-in compass, GPS antenna, gyro sensor, and low-noise amplifier (LNA) benefits you to determine the direction of the interference.

Display overview

Figure 38 provides descriptions for each segment of the measurement screen.

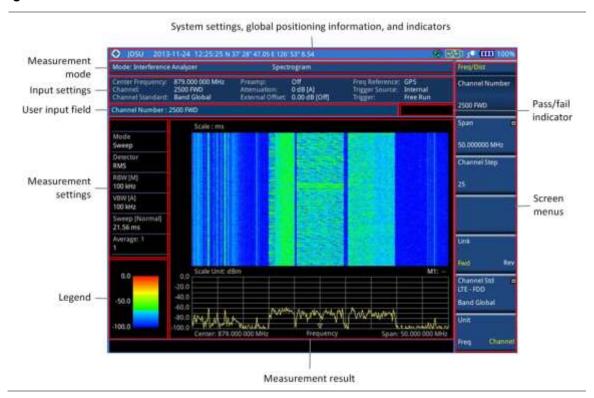


Figure 38 Interference measurement screen

Connecting a cable

Using an Omni or Yagi antenna

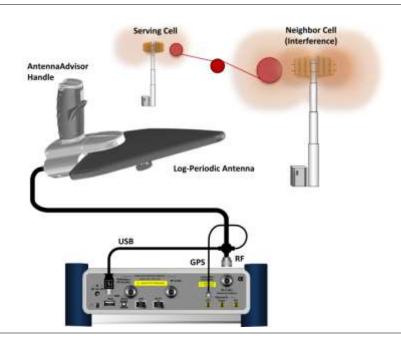
- Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD780A series.
- 2. Connect a GPS antenna to the GPS port of the JD780A series.

Figure 39 Interference measurement connection

Λ

CAUTION

If the input signal level to be measured is less than 0 dBm, set it to 0 dB attenuation or turn on the preamp to have better dynamic range for the testing.


Using an AntennaAdvisor handle

In the Interference Finder mode and the Radar Chart mode, you can perform interference hunting using the AntennaAdvisor Handle after attaching a broadband directional antenna to it. The handle is an optional device that has a built-in GPS antenna and LNA.

Procedure

- Mount a broadband antenna to your AntennaAdvisor Handle according to the quick start guide of the AntennaAdvisor Handle.
- 2. Connect the RF Type-N jack of the handle to the RF In port of the instrument.
- Connect the GPS SMA jack of the handle to the GPS port of the instrument.
 The GPS status indicator appears on the instrument screen. If GPS is locked, the indicator turns green.
- 4. Connect the **USB plug** of the handle to the **USB Host** port of the JD780A series. The device icon appears in the system status bar on the screen.

Figure 40 Connection using Antenna Advisor handle and log-periodic antenna

Selecting measurement mode

- 1. Press the MODE hard key.
- 2. Press the Interference Analyzer soft key. The Spectrum mode is selected by default.
- To change the mode, press the MEASURE hot key and then select the measurement mode: Spectrogram, Dual Spectrogram, RSSI, Interference Finder, Spectrum Replayer, or Radar Chart.

If the **Dual Spectrogram** is selected, you can select the left or right measurement pane in **MEASURE SETUP** to configure measurement parameters for the selected spectrogram.

Configuring test parameters

Setting frequency

You need to set the frequency range to be measured either with the center frequency and span or with the start and stop frequencies. You can also set the frequency with the channel number and span.

Procedure

To set the center frequency and span:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Center Frequency soft key.
- 4. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- 6. Press the Span soft key, and then do one of the following:
 - To set the span manually, select Span, enter a value, and then select the unit.
 - To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

NOTE

The **Zero Span** option is available only in the Spectrum mode. If you have selected **Zero Span**, select **TRIGGER > Free Run**, **External**, **GPS**, **Video**, or **Display Position**.

To set the start and stop frequencies:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Start Frequency soft key.
- 4. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- 6. Press the Stop Frequency soft key.
- 7. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 8. Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number and span:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- **3.** To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - b. Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.

- **c.** Press the **Select** soft key or the rotary knob to confirm the selection.
- Toggle the Link soft key to select the sweep direction and select Fwd for forward or Rev for reverse.
- **5.** To set the channel number, complete the following steps:
 - a. Press the Channel Number soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key or ENTER hard key to complete the entry. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- **6.** To set the span, complete the following steps:
 - a. Press the Span soft key.
 - **b.** Select the span option, from the following choices:
 - To set the span manually, select Span, enter a value, and then select the unit.
 - To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

The **Zero Span** option is available only in the Spectrum mode. If you have selected **Zero Span**, select **TRIGGER** > **Free Run**, **External**, **GPS**, **Video**, or **Display Position**.

Optional. To define the amount of frequency increment for the rotary knob:

- 1. Press the Frequency Step soft key, if the Freq is selected.
- 2. Enter a value by using the numeric keys.
- 3. Press the unit: GHz, MHz, kHz, or Hz.

Optional. To define the amount of channel increment for the rotary knob:

- 1. Press the Channel Step soft key, if the Channel is selected.
- 2. Enter a value by using the numeric keys.
- 3. Press the Enter soft key.

Setting frequency for 28 GHz downconverter

Once the CellAdvisor is connect to 28 GHz downconverter, the center frequency is automatically set to 28 GHz. You can measure the center frequency ranged from 27 to 30 GHz with the span or the start/stop frequencies. You cannot set the frequency with the channel number and span when the 28 GHz downconverter is in operation.

Procedure

To set the center frequency and span:

- 1. Press the FREQ/DIST hard key.
- 2. Press the Center Frequency soft key.
- 3. Enter a value from 27 to 30 GHz by using the numeric keys, the rotary knob, or the arrow keys.
- 4. Select the unit as GHz among the 4 options: GHz, MHz, kHz, or Hz.
- 5. Press the **Span** soft key, and then do one of the following:
 - To set the span manually, select Span, enter a value, and then select the unit.
 - To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

The **Zero Span** option is available only in the Spectrum mode. If you have selected **Zero Span**, select **TRIGGER** > **Free Run**, **External**, **GPS**, **Video**, or **Display Position**.

Optional. To define the amount of frequency increment for the rotary knob:

- 1. Press the Frequency Step soft key, if the Freq is selected.
- 2. Enter a value by using the numeric keys.
- 3. Press the unit: GHz, MHz, kHz, or Hz.

To set the start and stop frequencies:

- 1. Press the FREQ/DIST hard key.
- Press the Start Frequency soft key.
- 3. Enter a value from 27 to 30 GHz by using the numeric keys, the rotary knob, or the arrow keys.
- 4. Select the unit as GHz among the 4 options: GHz, MHz, kHz, or Hz.
- 5. Press the Stop Frequency soft key.
- 6. Enter a value from 27 to 30 GHz by using the numeric keys, the rotary knob, or the arrow keys.
- 7. Select the unit as GHz among the 4 options: GHz, MHz, kHz, or Hz.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- Press the Auto Scale soft key.
 Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the dBm soft key or the ENTER hard key.
- 3. To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation (Internal) > Auto.

To set the internal attenuation value (only when 28 GHz downconverter is in operation):

- 1 Press the AMP/SCALE hard key.
- 2 Press Attenuation Value Internal soft key.
- 3 Enter a value in fives by using the numeric keys.
- 4 Press the dB soft key or the ENTER hard key.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation (Internal) > Manual.
 - b. Press the Attenuation Value (Internal) soft key to set the level.
 - c. Enter a value between 0 and 55 in fives by using the numeric keys.
 - Press the **dB** soft key or the **ENTER** hard key.
- To couple the input attenuator's level with your reference level setting, select **Attenuation** (Internal)> Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

The Attenuation Value Internal and Attenuation Internal menus are available when the 28 GHz downconverter is in operation.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBm, dBV, dBmV, dBµV, V, or W. The scale unit on the screen changes accordingly.

Scale per division

You can use the Scale/Div feature available for the spectrum measurement screen. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- 3. Enter a value between 1 and 20 by using the numeric keys.
- **4.** Press the **dB** soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the Preamp soft key and select On or Off as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

Pre-amplifier for 28 GHz downconverter

You can turn the external pre-amplifier on to correct and compensate for the gain of the preamplifier so that amplitude readings show the value at the input connector. The Preamp External is for 28 GHz downconverter, and the Preamp Internal is for CellAdvisor.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Press the Preamp soft key.
- 3. Toggle the **Preamp Internal** soft key and select **On** or **Off** as needed.
- 4. Toggle the Preamp External soft key and select On or Off as needed.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select On.
- **3.** Enter a value by using the numeric keys.
- Press the unit soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Setting bandwidth

VBW based on the designated RBW. Selecting **Auto** changes the value to correspond to your frequency span setting for RBW and to the current RBW and VBW/RBW settings for VBW.

Procedure

To automatically set the RBW and VBW to your selected VBW/RBW ratio:

- 1. Press the BW/AVG hard key.
- 2. Press the VBW/RBW soft key to set the proportional VBW based on the designated RBW. Table 9 shows the ratio example for 30 kHz RBW.
- 3. Select the ratio: 1, 0.3, 0.1, 0.03, 0.01, or 0.003.
- 4. Toggle the RBW soft key and select Auto.
- **5.** Toggle the **VBW** soft key and select **Auto**.

The RBW or VBW value on the screen changes accordingly based on the span.

To manually set the RBW or VBW to your selected VBW/RBW ratio:

- 1. Press the BW/AVG hard key.
- 2. Press the RBW soft key.
- 3. Enter a value between 1 Hz to 3 MHz in 1-3 sequence by using the numeric keys.
- **4.** Select the unit: **MHz**, **kHz**, or **Hz**. The RBW setting automatically changes to **Manual**.
- 5. Press the VBW soft key.
- **6.** Enter a value by using the numeric keys.
- Select the unit: MHz, kHz, or Hz. The VBW setting automatically changes to Manual.

The RBW or VBW value on the screen changes accordingly.

Table 10 VBW/RBW ratio example

RBW	Ratio (VBW/RBW)	VBW
30 kHz	1:1	30 kHz
	1:0.3	10 kHz
	1:0.1	3 kHz
	1:0.03	1 kHz
	1:0.01	300 Hz
	1:0.003	100 Hz

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.
- 3. Enter a value between 1 and 100 as needed by using the numeric keys.
- 4. Press the Enter soft key.

Setting sweep

The **SWEEP** hot key is used to set and control the sweep time, sweep mode, gated sweep settings, and gated sweep on or off. This key is not available in the Dual Spectrum and Radar Chart modes.

Sweep time

You can set the sweep time automatically or manually. Manual setting allows you to set the sweep time beyond an automatic setting.

Procedure

- 1. Press the SWEEP hot key.
- 2. Select the sweep time option, from the following choices:
 - To automatically set, toggle the Sweep Time soft key and select Auto.
 - To manually set, complete the following steps:
 - a. Press the Sweep Time soft key.
 - **b.** Enter a value by using the numeric keys.
 - Select the unit: Sec, mSec, or µSec.
 The sweep time mode automatically changes to Manual.

Sweep mode

The default settings of the sweep mode are **Continue** and **Normal** to sweep continuously at a normal speed for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1. Press the SWEEP hot key.
- **2.** Toggle the **Sweep Mode** soft key and select **Single**. You can also use the **HOLD** hot key. The letter **HOLD** in red appears and the sweeping is paused.
- 3. Optional. Press the **Sweep Once** soft key to get a new measurement.

To return to the continuous sweep mode:

1. Toggle the **Sweep Mode** soft key and select **Continue**. You can also use the **HOLD** hot key. The letter **HOLD** in red disappears and the sweeping resumes.

Selecting **Sweep Mode > Fast** may reduce the measurement accuracy, but you can use this fast sweep mode to identify the existence of interfering signals.

Gated sweep

You can configure the gated sweep settings with an internal or external trigger source. If you select **Gated Sweep Settings**, you can view the signal in time domain.

Procedure

1. Press the **SWEEP** hot key.

- 2. Press the Gated Sweep Settings soft key.
- 3. Optional. Adjust sweep time to allow enough time for a cycle by completing the following steps:
 - a. Press the Zero Span Time soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Select the unit: Sec, mSec, or µSec.
- **4.** Set the period, if using the internal trigger source, by doing one of the following:
 - To select the preset period, complete the following steps:
 - a. Toggle the Period soft key and select StdSignal.
 - Press the StdSignal soft key, and then select the period: GSM (4.615 ms), WCDMA (10 ms), LTE (10 ms), EV-DO (5 ms), TD-SCDMA (5 ms), or WiMAX (10 ms).
 - To manually set the period, complete the following steps:
 - a. Toggle the Period soft key and select Manual.
 - **b.** Press the **Period** soft key to enter the amount of time.
 - c. Enter a value by using the numeric keys.
 - d. Select the unit: Sec, mSec, or µSec.
- **5.** Press the *TRIGGER* hot key, and then do one of the following:
 - Select External for an external trigger source.
 - Select Video or Display Position for the internal trigger source.
- **6.** Press the **PREV** hard key to continue setting the gated sweep.
- 7. Set the gate delay by completing the following steps:
 - a. Press the Gate Delay soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Select the unit: Sec, mSec, or μ Sec.
- **8.** Set the gate length by completing the following steps:
 - a. Press the Gate Length soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Select the unit: Sec, mSec, or µSec.
- 9. Press the PREV hard key to enable gated sweeping.
- **10.** Toggle the **Gated Sweep** soft key and select **On**.

This setting is not used in the Spectrum Replayer mode.

Conducting spectrum measurements

The spectrum measurement with an audible indicator is especially useful for locating interferer sources with a directional antenna.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the **Select Trace** soft key, and then select the trace number: **T1**, **T2**, **T3**, **T4**, **T5**, or **T6**. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3. Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or the rotary knob.

4. To select the detection option, press the **More (1/2) > Detectors**, and then do one of the following:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- 5. Optional. Press the More (1/2) > Trace Info soft key, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- 6. Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

NOTE

To be able to load a trace, the trace to be overlaid must be saved in the same measurement mode and frequency setting as the current measurement.

Sound indicator

You can use the Sound Indicator to help you identify interfering signals by sounding an alarm.

Procedure

- 1. Configure test parameters as described in the "Configuring test parameters" on page 108.
- 2. Press the MEASURE SETUP hot key.
- 3. Press the Sound Indicator soft key.
- 4. Toggle the Sound soft key between On and Off to enable and disable the alarm sound.
- 5. Select the alarm reference option from the following choices:
 - To set the active marker position as the alarm reference, toggle the Alarm Reference soft key and select Marker.
 - To set the limit as the alarm reference, complete the following steps:
 - a. Toggle the Alarm Reference soft key and select Line. The Limit Line menu becomes activated to be set.
 - **b.** Press the **Limit Line** soft key to define a threshold for the limit line.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Press the dBm soft key.
- Optional. To adjust the volume for alarm sound, press the Volume soft key and then turn the rotary knob clockwise or counter clockwise.
- 7. Optional. You can save logging data automatically so that you can load the measurement data and replay in the Spectrum Replayer mode. See "Using save" on page 33 for more information.

AM/FM audio demodulation

You can use the AM/FM Audio Demodulation to identify if the interfering signal is nth harmonics of AM/FM audio. The instrument sounds demodulated signals that you can hear through the speaker or headphones.

Procedure

- 1. Configure test parameters as described in the "Configuring test parameters" on page 108.
- 2. Press the MEASURE SETUP hot key.
- Toggle the Audio Demod soft key between On and Off to turn the AM/FM audio demodulation on and off.
- Press the **Demod at** soft key, and then select the marker number for the frequency to be demodulated.

NOTE

You must set the marker(s) first by using the **MARKER** hard key as the AM/FM demodulator uses the marker position to demodulate. See "Using marker" on page 58 for more information.

- 5. Press the Demod Mode soft key, and then select the demodulation mode: AM, FM and CW.
- **6.** Press the **Dwell Time** soft key, and then turn the rotary knob to set the demodulation interval between 1 and 20.
- 7. Press the Volume soft key, and then turn the rotary knob to set the speaker volume.
- **8.** Toggle the **Auto Gain** soft key between **On** and **Off** to enable or disable the automatic gain feature to adjust the interval gain of the demodulator.
- **9.** Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Interference ID

The Interference ID automatically classifies interfering signals over a designated spectrum and displays the list of possible signal types corresponding to the selected signal. This functionality is not available when the 28 GHz downconverter is in operation.

Procedure

- 1. Configure test parameters as described in the "Configuring test parameters" on page 108.
- 2. Press the MEASURE SETUP hot key.
- 3. Toggle the Interference ID soft key between On and Off to turn the Interference ID on and off.
- 4. To set the threshold level manually, complete the following steps:
 - a. Press the Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dBm soft key.
- **5.** Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analyzer" on page 138 for more information.

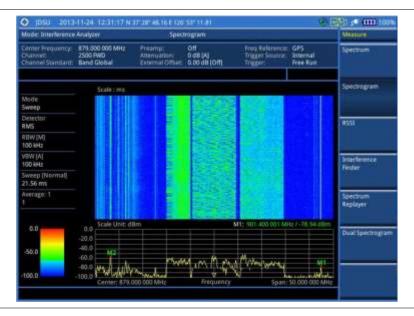
Conducting interference measurements

Spectrogram

The Spectrogram is particularly useful when attempting to identify periodic or intermittent signals as it captures spectrum activity over time and uses various colors to differentiate spectrum power levels. When the directional antenna is used to receive the signal, you will see a change in the amplitude of the tracked signal as you change the direction of the antenna and see a change in the Spectrogram colors. The source of the signal is located in the direction that results in the highest signal strength.

Setting measure setup

- 1. Configure test parameters as described in the "Configuring test parameters" on page 108.
- 2. Press the MEASURE SETUP hot key.
- 3. To set the amount of time between each trace measurement:
 - a. Press the Time Interval soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Sec soft key.
- 4. To set the time cursor on a specific trace position, complete the following steps:
 - a. Toggle the Time Cursor soft key and select On.
 - **b.** Turn the rotary knob to move the time cursor. You can also enter a value and then press the **Enter** soft key.


Enabling the time cursor puts the measurement on hold and you can make postprocessing analysis for each measurement over time using the time cursor.

- 5. To start a new measurement, press the Reset/Restart soft key.
- 6. Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

The spectrogram shows a vertical line on the chart when the marker is enabled on the screen.

Figure 41 Interference measurement in spectrogram

- The horizontal line or X-axis of the spectrogram is frequency.
- The vertical line or Y-axis is time.
- The color identification (Spectrogram) indicates power level of the tracked signal. As the signal strength increases, the color on the spectrogram changes accordingly.

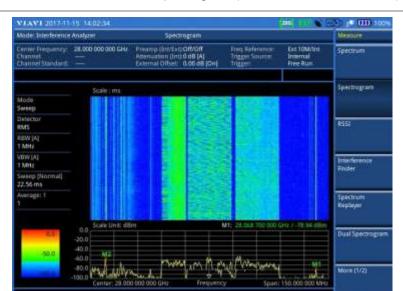


Figure 42 Interference measurement in spectrogram (on 28 GHZ downconverter)

Figure 43 Interference measurement in spectrogram with gated sweep on

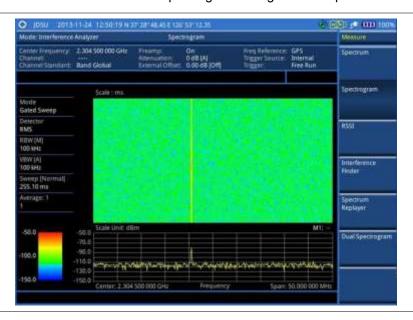
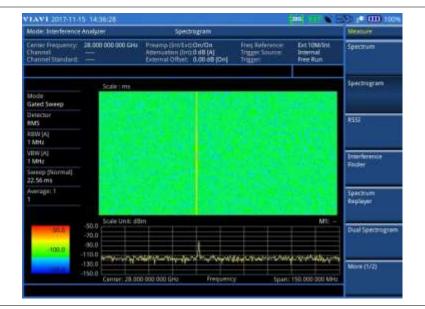



Figure 44 Interference measurement in spectrogram with gated sweep on (on 28 GHz

downconverter)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analyzer" on page 138 for more information.

Dual spectrogram

The Dual Spectrogram mode is useful to compare two spectrograms displayed simultaneously on the screen.

Setting measure setup

Procedure

- 1. Configure test parameters as described in the "Configuring test parameters" on page 108.
- 2. Press the MEASURE SETUP hot key.
- 3. Toggle the Active Window soft key and select Left or Right spectrogram to be set up.
- 4. To set the amount of time between each trace measurement:
 - a. Press the Time Interval soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Sec soft key.
- **5.** To set the time cursor on a specific trace position, complete the following steps:
 - a. Toggle the Time Cursor soft key and select On.
 - **b.** Turn the rotary knob to move the time cursor. You can also enter a value and then press the **Enter** soft key.

NOTE

Enabling the time cursor puts the measurement on hold and you can make post-processing analysis for each measurement over time using the time cursor.

- 6. To start a new measurement, press the Reset/Restart soft key.
- 7. Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 45 Interference measurement in dual spectrogram view

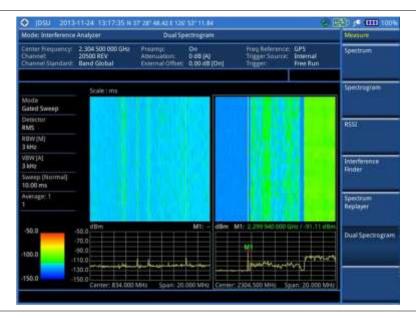
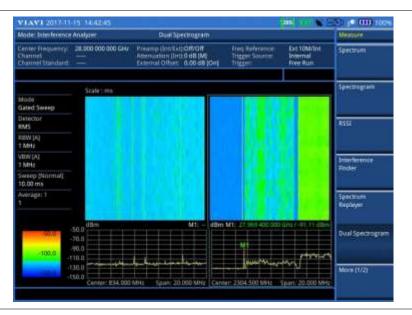



Figure 46 Interference measurement in dual spectrogram view (on 28 GHz downconverter)

RSSI

The Received Signal Strength Indicator (RSSI) is a multi-signal tracking metric that is particularly useful for measuring power-level variations over time. The RSSI measurement lets you assign power limit line for audible alarms and increase alarm counters every time a signal exceeds a defined limit line. For long-term analysis, the spectrogram and RSSI measurements can be automatically saved into an external USB memory. Post-analysis can be performed with JDViewer application software.

Setting measure setup

Procedure

- 1. Configure test parameters as described in the "Configuring test parameters" on page 108.
- 2. Press the MEASURE SETUP hot key.
- 3. To set up the alarm parameters, complete the following steps:
 - a. Press the Alarm soft key.
 - b. Press the Alarm at soft key and select the marker number: M1 to M6.
 - c. Press the Limit Line soft key to set a threshold for the alarm.
 - d. Enter a value by using the numeric keys. You can also use the rotary knob.
 - e. Press the dBm soft key.
 - f. Toggle the Alarm soft key between On and Off to turn the alarm feature on or off.
 - g. Optional. Press the Volume soft key and adjust the volume.
- 4. To set up the AM/FM audio demodulation, complete the following steps:
 - a. Press the AM/FM Audio Demod soft key.
 - b. Toggle the Audio Demod soft key between On and Off to turn the AM/FM audio demodulation on or off.
 - c. Press the **Demod at** soft key, and then select the marker number for the frequency to be demodulated.

NOTE

For the alarm and AM/FM audio demodulation, you must set the marker(s) first by using the **MARKER** hard key as these features use the marker position to sound alarm or demodulate. See "Using marker" on page 58 for more information.

- d. Press the **Demod Mode** soft key, and then select the demodulation mode: **AM**, **FM** and **CW**.
- **e.** Press the **Dwell Time** soft key, and then turn the rotary knob to set the demodulation interval between 1 and 20.
- f. Toggle the Auto Gain soft key between On and Off to enable or disable the automatic gain feature to adjust the interval gain of the demodulator.
- g. Optional. Press the Volume soft key and adjust the volume.
- To start a new measurement, press the Reset/Restart soft key.
- **6.** Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 47 Interference measurement in RSSI

Figure 48 Interference measurement in RSSI (on 28 GHz downconverter)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analyzer" on page 138 for more information.

Interference finder

The Interference Finder is an automatic triangulation algorithm that uses GPS coordinates to locate possible interference sources based on three measurements. The interference finder calculates possible interference locations using its inscribed circle or circumscribed circle based on measured intersection points. You can plot up to seven measurement points and select three that are more representative for triangulation. JD780A series automatically logs measurement positions not to lose them while changing measurement modes.

If you have obtained user experience data through Viavi's ariesoGEO and generated raster data files from the application, you can load them onto your route map to help you troubleshoot problems easily and quickly.

Loading a map

After you have made connections as described in the "Connecting a cable" on page 107 and configured test parameters as described in the "Configuring test parameters" on page 109, you need to load a map of the area where you want to go out and do interference hunting.

Procedure

Plug in your USB drive that has a map file in .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the Send to EQP menu in JDMapCreator.

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- 2. Press SAVE/LOAD hot key, and then select Load > Load Map.
- 3. Navigate to a map file you want to open.
 The File Information pane displays file properties including file name, map type, and address. If you see "Sizable Map" for Map Type, you can zoom in and out the base map after loading.
- 4. Press the **Load** soft key. The loaded map appears.

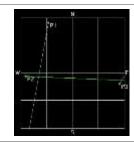
Initializing AntennaAdvisor

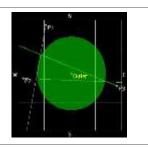
If you have connected the AntennaAdvisor Handle, you must initialize it.

Procedure

- Press the *MEASURE SETUP* hot key.
 A message appears at the bottom of the screen to alert you if you have not performed initialization of your connected the antenna handle set.
- 2. To adjust the integration bandwidth based on the center frequency of the interfering signal that you have identified in the Spectrum view, complete the following steps:
 - a. Press the Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit option from the choices: GHz, MHz, kHz, and Hz.
- 3. Initialize the antenna handle to calibrate the built-in compass by completing the following steps:
 - a. Hold your antenna handle horizontally in its upright position.
 - **b.** Point the antenna to the north, and then press the **Initialize AntennaAdvisor** soft key.

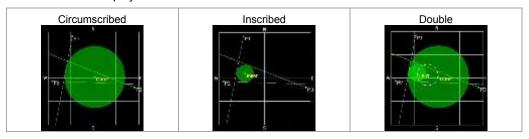
Setting location


As the Interference Finder uses triangulation to provide a circle of possible source of the interference, you must set three location points so that the straight lines started from the point can create three intersections. If you have the AntennaAdvisor Handle, it makes it easy to determine these points using its built-in compass and GPS antenna while measure power level of the received signal.


- 1. Press the Location Setup soft key in the Measure Setup menu bar.
- 2. Press the Location soft key to set three location points.
- 3. Press the Point [1|2|3] soft key to set the first location point, and then do one of the following:
 - To automatically get the selected point's positioning information with GPS locked, press the Get GPS Position. The instrument displays the latitude and longitude information of the signal received by either the GPS antenna or AntennaAdvisor Handle.
 - To manually define a position for the selected point, complete the following steps:
 - a. Press the Latitude soft key, and then set the properties: North/South, Degree, Minute, and Second.
 - Press the Longitude soft key, and then set the properties: East/West, Degree, Minute, and Second.
- To set an azimuth, do one of the following:
 - Using the AntennaAdvisor Handle, complete the following steps:
 - a. Press and hold the TRIGGER button on the handle and pan the antenna handle to scan through until you find the strongest RSSI value. RSSI, polarization, elevation and azimuth readings are continuously updated on the screen while pressing the physical button.
 - b. Release the TRIGGER button to stop scanning.
 - Using a compass, complete the following steps:
 - a. Press the Azimuth soft key.
 - **b.** Pan your Yagi antenna to find a signal with highest RSSI value, and then measure an azimuth of the interfering signal.
 - c. Enter the measured angle using the numeric keys, and then press the Enter soft key.
 - Using your instrument without a compass, complete the following steps:
 - a. Press the Azimuth soft key.
 - **b.** Pan your Yagi antenna to find a signal with highest RSSI value.
 - **c.** Turn the rotary knob to align the straight line on the base map with the direction of the interfering signal. The azimuth calculated by the instrument appears on the screen.

The AntennaAdvisor Handle has a built-in low-noise amplifier (LNA) and you can turn it on and off using the physical On/Off button located on the rear side of the handle unit. For example, if the received signal is weak, you can turn on the switch to improve S/N.

- 5. To save the defined position, press the Save Position soft key and then select one of the soft keys to which you want to save the position information. The instrument stores the saved location points in the internal memory so that you can load them by using the Load Position soft key.
- 6. Press the Location soft key, and then repeat steps 3-5 to set the second location point.
- Press the Location soft key, and then repeat steps 3-5 to set the third location point.
 The circumscribed circle appears when the lines from three location points create three intersections or vertices.


Setting display mode

When the triangulation is done with three location points and azimuth for each point, you can view a circumscribed circle by default. You can change the display mode to inscribed circle or double circles to view a narrower area. The center of the green-shaded circle is determined to be where the source

of the interfering signal resides.

Procedure

- 1. Press the **Display Setup** soft key in the Measure Setup menu bar.
- 2. Press the **Display Mode** soft key, and then select the option from the following choices:
 - Circum: It displays a circumscribed circle that meets the three vertices of the triangle.
 - **Inscribed:** It displays an inscribed circle that meets the three sides of the triangle.
 - Double: it displays both circumscribed and inscribed circles.

- 3. Toggle the Screen Mode soft key to select Map or Full as needed.
 - Map: This option displays what are inside the base map with the map image.
 - Full: This option displays three location points and defined circle without the map image.

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the green-shaded area on the map and view the location of the interference source in detail.

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- 3. Do one of the following:
 - To zoom into an area of interest directly, complete the following steps:
 - **a.** Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
 - b. Press the Zoom In and Zoom Out soft keys, as you need, to decrease and increase the selected area.
 - c. Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
 - **d.** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.
 - To zoom into the center or zoom out from the center, complete the following steps:
 - a. Toggle the **Zoom to** soft key and select **Center**.
 - **b.** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
 - **c.** Move the zoomed-in area by using the four arrow keys, as you need.

Measurement example

Figure 49 Interference finder measurement in map view

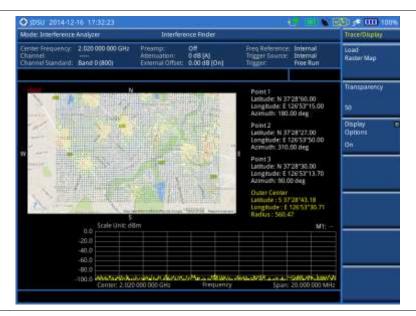
Figure 50 Interference finder measurement in map view (on 28 GHz downconverter)

Loading and displaying raster data

If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your base map to help you assume suspicious points of interference easily and pinpoint the source of the interference quickly.

- 1. Copy a set of raster data files into your USB memory drive, including the following:
 - ASCII: .tab, .asc, and .clr files
 - BIL: .tab, .hdr, .bil, and .clr files

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.


- 2. Plug in the USB memory drive to your instrument.
- 3. Press the TRACE/DISPLAY hard key.
- **4.** Press the **Load Raster Map** soft key. The file explorer window appears.
- **5.** Navigate to the raster file (.tab) you want to open, and then press the **Load** soft key. The raster image appears on top of your base map as shown in **Figure 51**.

NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **6.** To select the display option, complete the following steps:
 - a. Press the Display Options soft key.
 - b. Select the option you desire from the choices: On, Off, and Blink.
- 7. To adjust the transparency level of the image, complete the following steps:
 - a. Press the Transparency soft key.
 - b. Enter a value between 0 for opaque and 100 for clear.
 - c. Press the Enter soft key.

Figure 51 Raster image overlaid on the map in interference finder

Mode, Into Ference Analyzer

Interference Flodes

Center Frequency 28,000 000 000 GHz

Amenyation (Into 0 off IA)

Freq Reference: Ear 10M/Int
Internal
Channel Standard: External Other: 0.00 d8 Kml
Trigger Source: Five Survey
Free Run

N 37221700 00 120 day
Azimuth: 180.00 deg
Azimuth: 50 00 deg
Azimuth: 50

Figure 52 Raster image overlaid on the map in interference finder (on 28 GHz downconverter)

Spectrum Replayer

The Spectrum Replayer lets you retrieve and replay recorded spectrum analyzer traces in interference analysis mode. These traces can be played back in the spectrogram or RSSI. You can configure the limit line to create failure points when signals exceed it. The failure points are clearly displayed on the trace timeline for quick access during playback.

Setting measure setup

- 1. Press the **MEASURE** hot key.
- 2. Press the **Spectrum Replayer** soft key. The file manager window appears.
- Select a file to be loaded, and then press the Load soft key. The Measure Setup screen menus appear.
- Toggle the Replay Direction soft key between FWD and REV to change play direction to forward or reverse.
- 5. Press the Replay Speed soft key, and then select the speed option: x1, x2, x3, and x4.
- 6. Press the Play soft key to start playing.
- 7. Press the Pause soft key to pause or stop playing data.
- 8. To move to a particular failure position directly and play from there, complete the following steps:
 - a. Press the Jump to Fail Index soft key.
 - Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- Optional. Toggle the Time Cursor soft key between On and Off to display or hide the time cursor on the screen. This key becomes activated when you play logged data in the Spectrogram mode.

If you connected a USB drive, do not remove it while playing. Doing so may freeze the USB port, which will require you to restart the instrument to get a USB drive recognized again.

Setting display

You can select the display option.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Select the display option: Spectrum, Spectrogram, or RSSI.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line, multi-segment line, and channel limit. See "Setting limit for interference analyzer" on page 138 for more information.

Radar Chart

If you have identified an interfering signal on your spectrum view, you can move to the Radar Chart mode and measure RSSI power level through 360 degrees at a location received by the connected broadband directional antenna so that you can determine the direction of the source of the interference. A set of the AntennaAdvisor Handle with the antenna is mandatory to perform measurements in this mode.

If you have obtained user experience data through Viavi's ariesoGEO and generated raster data files from the application, you can load them onto your base map to help you troubleshoot problems easily and quickly.

Loading a map

After you have connected your AntennaAdvisor Handle set to the JD780A series as described in the "Using an AntennaAdvisor handle" on page 108 and configured test parameters as described in the "Configuring test parameters" on page 109, you need to load a map of the area where you want to go out and do interference hunting activities.

Procedure

n. Plug in your USB drive that has a map file in .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the Send to EQP menu in JDMapCreator.

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- 2. Press **SAVE/LOAD** hot key, and then select **Load > Load Map**.
- 3. Navigate to a map file you want to open.

 The File Information pane displays file properties including file name, map type, and address. If you see "Sizable Map" for Map Type, you can zoom in and out the base map after loading.
- Press the Load soft key.
 The loaded map appears. Before pressing the Get GPS Position soft key, you should not

interpret the center of the radar chart as your current geographical location on the map.

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- Do one of the following:
 - To zoom into an area of interest directly, complete the following steps:
 - a. Toggle the Zoom to soft key and select Area. The black rectangle appears on the map.
 - b. Press the Zoom In and Zoom Out soft keys, as you need, to decrease and increase the selected area.
 - c. Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
 - d. Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.
 - To zoom into the center or zoom out from the center, complete the following steps:
 - a. Toggle the Zoom to soft key and select Center.
 - b. Press the Zoom In and Zoom Out soft keys, as you need, to zoom in and zoom out.
 - c. Move the zoomed-in area by using the four arrow keys, as you need.

Initializing AntennaAdvisor

After you have connected the AntennaAdvisor Handle and loaded a map for the area of interest, you must initialize the AntennaAdvisor Handle to calibrate its built-in compass in order to obtain accurate azimuth information.

Procedure

- Press the MEASURE SETUP hot key.
 - A message appears at the bottom of the screen to alert you if you have not performed initialization of your connected the antenna handle set.
- 2. To adjust the integration bandwidth based on the center frequency of the interfering signal that you have identified in the Spectrum view, complete the following steps:
 - a. Press the Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit option from the choices: GHz, MHz, kHz, and Hz.
- 3. Initialize the antenna handle to calibrate the built-in compass by completing the following steps:
 - a. Hold your antenna handle horizontally in its upright position. To avoid unnecessary impact of external magnetic field, position yourself at the location where the value of magnetic field strength displayed on the instrument is green.
 - b. Point the antenna to the north, and then press the Initialize AntennaAdvisor soft key. The message disappears and the red line for the current antenna direction moves to the 0-degree line and overlaps to let you know that the initialization is done successfully.

NOTE

If is recommended that you re-initialize the AntennaAdvisor Handle after measurements

to re-calibrate the compass when you notice that the red line on the radar chart is not aligned with the north on the map even though you are pointing the antenna to the north.

Obtaining RSSI data

After you have connected your antenna handle set and done necessary setups, you can monitor the power level of the received signal, the amount of polarization, and elevation level real time. Using the Trigger button on the antenna handle set, you can plot the RSSI level through 360 degrees at your location.

Procedure

- When you have the green GPS indicator, press the **Get GPS Position** soft key in the Measure Setup menu bar to set your current location with GPS locked as the center of the radar chart. The latitude and longitude information at the bottom of the display changes from 'Unknown Position' to the obtained position information.
- Optional. To save a position to recall for triangulation in the Interference Finder mode, press the Save Position soft key and then select one of the soft keys to which you want to save.
- 3. Monitor the RSSI reading of the received signal. If the signal is weak, turn on the LNA switch on the antenna handle set to improve S/N.

NOTE

The AntennaAdvisor Handle has a built-in low-noise amplifier (LNA) and you can turn it on and off by toggling the physical On/Off switch located on the rear side of the handle unit.

- 4. Hold the antenna handle set horizontally and then make the following measurement:
 - To obtain a RSSI value, complete the following steps:
 - a. Press the TRIGGER button located on the antenna handle. Every time you press the physical button on the handle, a beep is sounded and a power level of the received signal is plotted as a blue dot on the radar chart. Depending on the strength of the measured value, you may hear different tones of beeping.
 - **b.** With panning the antenna horizontally to vary the angle of the direction, repeat pressing the **TRIGGER** button to obtain at least five points if you want to do the localization.
 - To obtain RSSI values continuously, complete the following steps:
 - a. Press and hold the **TRIGGER** button located on the antenna handle to start a continuous measurement.
 - b. Pan the antenna handle horizontally through the angle of 360 degrees you desire. A beep is sounded repeatedly to let you know that the measurement is continuing and measured values are plotted on the radar chart. See Figure 53 for an example.
 - c. Release the TRIGGER button to stop the continuous measurement.

NOTE

The maximum number you can plot on the radar chart is **500 points** both in the single and continuous measurements. If your measurement reached to 500 points, you need to reset the measurement by pressing the Localization soft key twice or performing the initialization of the AntennaAdvisor Handle.

Concentric circles indicate different levels of RSSI. The outer circle, the higher power level is. You can use the **AMP/SCALE** hard to adjust the amplitude scale of the chart.

- To change the display mode, toggle the Screen Mode soft key and select Map or Full as needed.
 - Map: It displays measured points inside the base map image. If you are in the area outside the base map and continue your measurement with the Trigger button, the instrument continue obtaining data even though the radar chart disappears from the screen. You can view obtained data when you change this display option to Full.
 - Full: It displays measured points without the base map image. In case that you made

measurements in the area outside the map image, selecting this option moves your measured data to the center of the display so that you can view the result.

Localizing RSSI data

The Localization feature lets you view averaged and smoothed measurement data with a bold green line on the radar chart that helps you determine the direction of the highest RSSI value. When you have five or more data points plotted on the radar chart, you can perform this localization.

Procedure

- Press the Localization soft key in the Measure Setup menu bar.
 All the measured points turn to green color and you can view the bold green line that indicates the possible direction of the interference source. See Figure 55 for an example.
- 2. To clear all the data plots on the radar chart, press the **Localization** soft key again.

Measurement example

Figure 53 RSSI data plotted on the radar chart

Figure 54 RSSI data plotted on the radar chart (on 28 GHz downconverter)

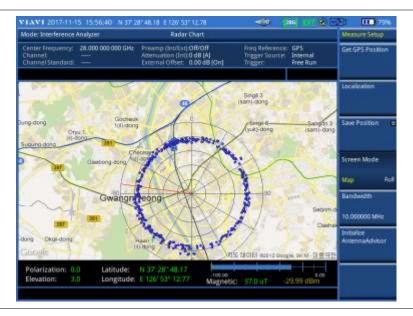



Figure 55 Localized RSSI data on the radar chart

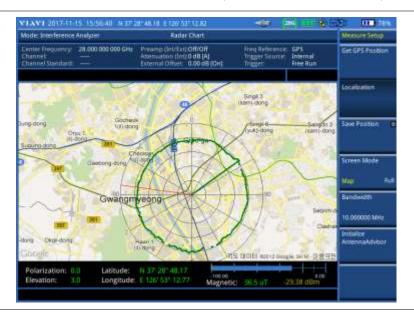


Figure 56 Localized RSSI data on the radar chart (on 28 GHz downconverter)

Loading and displaying raster data

If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your background map to help you view suspicious points of interference easily and pinpoint the source of the interference quickly.

Procedure

- 1. Copy a set of raster data files into your USB memory drive, including the following:
 - ASCII: .tab, .asc, and .clr files
 - BIL: .tab, .hdr, .bil, and .clr files

NOTE

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.

- 2. Plug in the USB memory drive to your instrument.
- 3. Press the TRACE/DISPLAY hard key.
- **4.** Press the **Load Raster Map** soft key. The file explorer window appears.
- 5. Navigate to the raster file (.tab) you want to open, and then press the **Load** soft key. The raster image appears on top of your base map.

NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **6.** To select the display option, complete the following steps:
 - a. Press the Display Options soft key.
 - b. Select the option you desire from the choices: On, Off, and Blink.
- 7. To adjust the transparency level of the image, complete the following steps:
 - a. Press the Transparency soft key.
 - **b.** Enter a value between **0** for opaque and **100** for clear.
 - c. Press the Enter soft key.

Setting limit for interference analyzer

Procedure

To use the display line:

- 1. Press the LIMIT hot key.
- 2. Press the Display Line soft key for a reference line.
- 3. Enter a value, and then press the dBm unit soft key.
- 4. Toggle the **Display Line** soft key between **On** and **Off** to display and dismiss the reference line. The straight line appears across the screen to be used as a visual reference only.

To display the multiple segment line:

- Press the LIMIT hot key.
- 2. Press the Multi Segment Line soft key for Pass/Fail indication.
- 3. Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- Set the number of segments for the selected upper or lower limit line. You can set up to 50 segments.
 - a. Press the # of Line soft key.
 - b. Enter a value between 1 and 50 by using the numeric keys.
 - c. Press the Enter soft key.
- Press the Autoset soft key to let the instrument set the limit for each segment and display the line.
- **6.** Optional. To move the limit line, complete the following steps:
 - a. Select Limit Up/Down or Limit Left/Right.
 - b. Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7. Optional. To edit the segment properties, complete the following steps:
 - a. Press the Edit Limit soft key.
 - b. Press the Move soft key and then turn the rotary knob to select the segment to edit.
 - c. Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the **Line** soft key and select **Off**.
 - To add a new point, press the Add Point soft key.
 - To delete the selected point, press the **Delete Point** soft key.
 - To change the position, press the Frequency or Amplitude soft key, and then turn the rotary knob to change the value as desired.

To define the channel limit:

- 1. Press the LIMIT hot key.
- 2. Press the Channel Limit soft key.
- 3. To define the index table, complete the following steps:
 - Toggle the Table soft key between On and Off to display and hide the channel index table on the screen.
 - b. Press the Index soft key.
 - c. Enter an index number to be set between 1 and 10 by using the numeric keys.
 - d. Press the Enter soft key.
 - Press the Start Frequency or Center Frequency soft key depending on your prior frequency setting.
 - f. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow

keys.

- g. Select the unit: GHz, MHz, kHz, or Hz.
- **h.** Press the **Stop Frequency** or **Span Width** soft key depending on your prior frequency setting.
- Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- j. Select the unit: GHz, MHz, kHz, or Hz.
- 4. To set the limits for Pass/Fail indication, complete the following steps:
 - a. Toggle the Limit soft key between On and Off to enable and disable the limit.
 - b. Press the High Limit soft key.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - d. Press the dBm soft key.
 - e. Press the Low Limit soft key.
 - **f.** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - g. Press the dBm soft key.
- **5.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Using GSM/GPRS/EDGE Signal Analyzer

This chapter provides instructions for using the GSM/GPRS/EDGE Signal Analyzer function (option 022) with GSM//GPRS/EDGE OTA Analyzer function (option 042). Topics discussed in this chapter are as follows:

Introduction	141
Display overview	141
Connecting a cable	142
Selecting measurement mode	144
Configuring test parameters	144
Conducting spectrum measurements	148
Conducting RF measurements	149
Conducting power vs. time measurements	156
Conducting constellation measurements	159
Performing auto measurements	161
Conducting GSM OTA measurements	163

Introduction

The Global System for Mobile Communications (GSM) is a digital cellular standard that uses Time Division Multiple Access (TDMA) multiplexing scheme and Gaussian Minimum Shift Keying (GMSK) modulation. The Enhanced Data Rates for GSM Evolution (EDGE) is an enhancement to GSM that promises to deliver multimedia and other broadband applications. It uses TDMA and $3\pi/8$ 8PSK (phase shift keying) modulation.

This instrument performs measurements using the methods and limits as defined in the 3GPP TS 51.021 Base Station System (BSS) equipment specification: Radio Aspects V8.9.0 (2003-06) and SGPP TS 45.005 Radio Transmission and Reception (version 12.5.0, release 12). The Pass/Fail indictor helps you to determine base station performance easily.

This instrument provides the following measurement tools for GSM/GPRS/EDGE system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask (SEM)
 - Output RF Spectrum
 - Spurious Emissions
- Power vs. Time
 - Power vs. Time (Slot)
 - Power vs. Time (Frame)
- Modulation Analysis
 - Constellation
- Auto Measure
- Over The Air (OTA)
 - Channel Scanner
 - Frequency Scanner
 - Multipath Profile
 - Modulation Analyzer

Display overview

Figure 57 provides descriptions for each segment of the measurement screen.

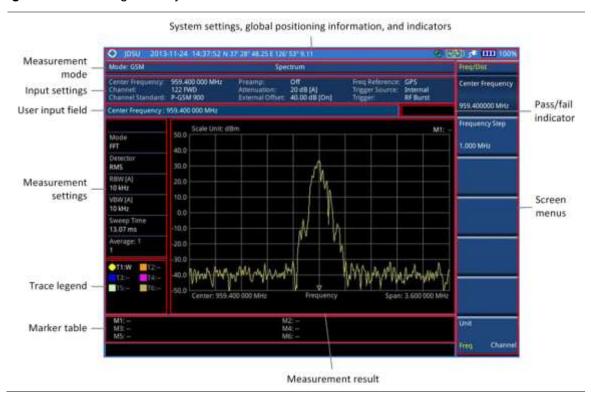


Figure 57 GSM signal analyzer measurement screen

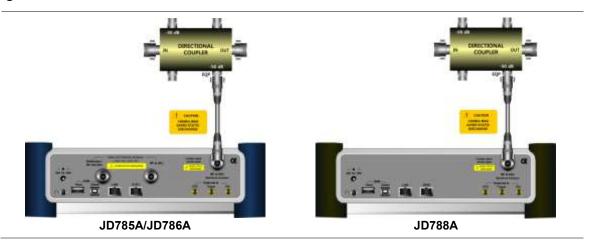
Connecting a cable

Direct connection

Procedure

1. Connect the **Spectrum Analyzer RF In** port of the JD780A series and the power amplifier output port of BTS.

Figure 58 Direct connection



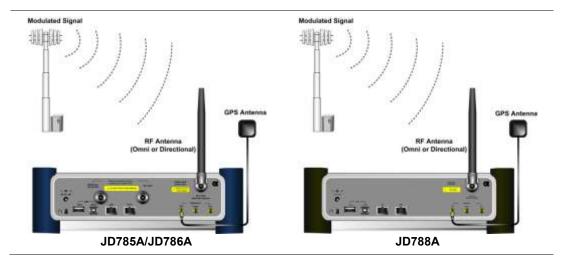
Indirect connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the monitor (test) port of BTS.

Figure 59 Indirect connection

CAUTION


The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

Procedure

- Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD780A series.
- 2. Connect a GPS antenna to the GPS port of the JD780A series.

Figure 60 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Press the Signal Analyzer soft key.
- 3. Press the GSM soft key. The Spectrum mode is set by default.
- 4. Press the MEASURE hot key, and then select the measurement mode option from the following choices:
 - Spectrum
 - RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, Output RF Spectrum, or Spurious Emissions
 - Power vs Time > Power vs Time (Slot) or Power vs Time (Frame)
 - Constellation
 - Auto Measure
 - OTA > Channel Scanner, Frequency Scanner, Multipath Profile, or Modulation Analyzer

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Center Frequency soft key.
- 4. Enter a value by using the numeric keys. You can also use the rotary knob.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a. Press the Frequency Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- 3. To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears. See "Appendix C – Band, frequency & channel standard" on page 628 for more information.

- Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
- **c.** Press the **Select** soft key or the rotary knob to confirm the selection.
- 4. Press the Channel Number soft key.
- 5. Enter a value by using the numeric keys. You can also use the rotary knob.
- 6. Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a. Press the Channel Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

NOTE

This frequency setting is not used in the Spurious Emissions mode.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- 2. Press the Auto Scale soft key.

 Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the unit soft key or the ENTER hard key.
- 3. To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - b. Press the Attenuation Value soft key to set the level.
 - **c.** Enter a value between 0 and 55 in fives by using the numeric keys.

- d. Press the dB soft key or the ENTER hard key.
- To couple the input attenuator's level with your reference level setting, select Attenuation
 Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- 3. Enter a value between 1 and 20 by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select On.
- 3. Enter a value by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.
- 3. Enter a value between 1 and 100 as needed by using the numeric keys.
- **4.** Press the **Enter** soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1. Press the SWEEP hot key.
- 2. Toggle the **Sweep Mode** soft key and select **Single**. You can also use the **HOLD** hot key. The letter **HOLD** in red appears and the sweeping is paused.
- 3. Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.

- 1. Press the TRIGGER hot key.
- 2. Select the trigger source option from the following choices:

To set the trigger level	Select
When using the RF burst (wideband) trigger	RF Burst
To free burst if there is a frequency burst signal	Internal FB
To training sequence code	RF Burst & TS
To external trigger reference	External
To the free trigger	Free
To the locked GPS	GPS

Conducting spectrum measurements

If you have configured test parameters as described in the "Configuring test parameters" on page 144, your measurement result is displayed on the screen as like the following example, Figure 61.

Figure 61 Spectrum measurement screen with GSM signal analyzer

Setting measure setup

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the Time Slot soft key, and then select your desired time slot number from 0 to 7.
- **3.** *Optional.* To set the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - **b.** Press the **Delay** soft key to set the amount of delay in μ s.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- **3.** Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or rotary knob.

- **4.** Optional. Press the **More (1/2) > Trace Info** soft key, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or **None** to hide the information display.
- 5. Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measures in-channel power for GSM/GPRS and EDGE systems, which use dynamic power control to ensure that each link is maintained with minimum power. It gives two fundamental benefits of keeping overall system interference to a minimum level and of maximizing battery life in the case of mobile stations. It determines the power delivered to the antenna system on the RF channel under test. The instrument acquires a GSM/GPRS or EDGE signal in the time domain. The average power level above the threshold is then computed and displayed.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 144, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the **Time Slot** soft key to assign a time slot with which performs measurements, and then select your desired time slot number from **0** to **7**.
- **3.** Optional. To set the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - b. Press the **Delay** soft key to set the amount of delay in μ s.
 - c. Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 62 Channel power measurement with GSM signal analyzer

Channel power measurement result shows channel power and spectrum density in a user specified channel bandwidth. The peak to average ratio (PAR) is shown at the bottom of the screen as well. The shaded area on the display indicates the channel bandwidth.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 155 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth,

which includes 99% of the transmitted power among total transmitted power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 144, you can continue your measurement.

Procedure

- 1. Press the MEASURE SETUP hot key.
- Press the Time Slot soft key to assign a time slot with which performs measurements, and then select your desired time slot number from 0 to 7.
- 3. Optional. To set the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - b. Press the **Delay** soft key to set the amount of delay in μ s.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

The Occupied Bandwidth measurement shows both of power across the band and power bandwidth in a user specified percentage to determine the amount of spectrum used by a modulated signal. Occupied bandwidth is typically calculated as the bandwidth containing 99% of the transmitted power.

Figure 63 Occupied bandwidth measurement with GSM signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 155 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement is to identify and determine the power level of outof-band spurious emission outside the necessary channel bandwidth and modulated signal. It measures the power ratio between in-band and adjacent channels. The JD780A series indicates either Pass or Fail based on the specified limit of the signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 144, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the **Time Slot** soft key to assign a time slot with which performs measurements, and then select your desired time slot number from **0** to **7**.
- **3.** Optional. To set the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - b. Press the **Delay** soft key to set the amount of delay in μ s.
 - c. Enter a value by using the numeric keys. You can also use the rotary knob.
 - **d.** Press the μ s soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 64 SEM measurement with GSM signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 155 for more information.

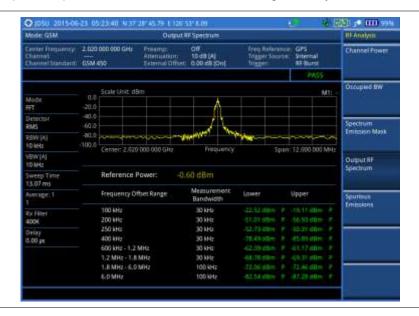
Outpur RF spectrum

The Output RF Spectrum measures power of the output RF modulation spectrum of the carrier at different frequency offsets from the carrier in different measurement bandwidths. It is used to determine if the output spectrum due to modulation and wideband noise for all supported RF channels meets the requirements as specified in 3GPP TS 45.005 and conforms to the specification.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 144, you can continue your measurement.

Procedure


- Press the MEASURE SETUP hot key.
- 2. Press the **Time Slot** soft key to assign a time slot with which performs measurements, and then select your desired time slot number from **0** to **7**.
- 3. Optional. To set the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - **b.** Press the **Delay** soft key to set the amount of delay in μ s.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - **d.** Press the μ s soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 65 Output RF spectrum measurement with GSM signal analyzer

NOTE

A set of limit values are applied according to the current channel power and automatically displayed in the result table. You can use the *LIMIT* hot key to enable or disable the Pass/Fail indication. See "Setting limit for RF tests" on page 155 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 144, you can continue your measurement.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. To set up the range table and parameters, press the Range Table soft key and then complete the following steps:
 - **a.** Press the **Range** soft key, and then select the range number between **1** and **20** to add as a new or change the existing settings.
 - **b.** Do the following as desired:
 - Select Start Frequency, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.
 - c. Press the PREV hard key.
 - d. Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3. Toggle the Measure Type soft key between Examine and Full to select the measurement type.

NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 4. To set the number of measurements to be averaged, complete the following steps:
 - a. Press the Average soft key.
 - b. Enter a value between 1 and 100.
 - c. Press the Enter soft key.
- 5. To move the highlighted bar in the result table to other range, complete the following steps:
 - a. Press the Range soft key in the Measure Setup menu bar.
 - b. Enter a value between 1 and 20.
 - c. Press the Enter soft key.

Measurement example

Figure 66 Spurious emissions measurement with GSM signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 155 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit, Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
Output RF spectrum	Output RF Spectrum	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings.
 See "Using save" on page 33 for more information.

Conducting power vs. time measurements

The Power vs. Time measurement measures the mean transmission power during the useful part of GSM bursts and verifies that the power ramp fits within the defined mask. It also lets you view the rise, fall, and useful part of the GSM burst.

This measurement provides masks for both of Base Transceiver Station (BTS) and Mobile Station (MS). The timing masks are referenced to the transition from the bit 13 to the bit 14 of the mid-amble training sequence. For GMSK measurements, the 0 dB reference is determined by measuring the mean transmitted power during the useful part of the burst.

Power vs. time (slot)

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 144, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the **Time Slot** soft key to assign a time slot with which performs measurements, and then select your desired time slot number from **0** to **7**.
- Press the Detect Mode soft key, and then select the signal standard option: Auto, GSM, or EDGE. Auto is set by default. The instrument applies a mask automatically based on the selected mode.
- **4.** Optional. To set the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - b. Press the **Delay** soft key to set the amount of delay in µs.
 - c. Enter a value by using the numeric keys. You can also use the rotary knob.
 - **d.** Press the μ**s** soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.


Setting limit for burst power

- Press the LIMIT hot key.
- 2. Press the PvsT Test Limits soft key.
- 3. Press the Burst Power soft key to set the limit in the Power vs. Time (Slot) measurement.
- Toggle the Test Limits soft key between On and Off to enable or disable the Pass/Fail indication.
- 5. Set the upper threshold:
 - a. Press the High Limit soft key.
 - **b.** Enter a value for the upper limit, and then press the **dBm** unit soft key.
- 6. Set the lower threshold:
 - a. Press the Low Limit soft key.

- b. Enter a value for the lower limit, and then press the dBm unit soft key.
- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 8. Optional. Go to **SAVE/LOAD** > **Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Measurement example

Figure 67 Power vs. time (slot) measurement with GSM/EDGE signal analyzer

Power vs. time (frame)

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 144, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1. Press the MEASURE SETUP hot key.
- Press the Detect Mode soft key, and then select the signal standard option: Auto, GSM, or EDGE. Auto is set by default. The instrument applies a mask automatically based on the selected mode.
- **3.** Optional. To set the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - b. Press the **Delay** soft key to set the amount of delay in μ s.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - **d.** Press the μ**s** soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

Setting limit for frame average power

- 1. Press the LIMIT hot key.
- 2. Press the PvsT Test Limits soft key.
- 3. Press the **Frame Avg Power** soft key to set the limit in the Power vs. Time (Frame)
- Toggle the Test Limits soft key between On and Off to enable or disable the Pass/Fail indication.
- 5. Set the upper threshold:
 - a. Press the High Limit soft key.
 - **b.** Enter a value for the upper limit.
 - c. Press the dBm unit soft key.
- 6. Set the lower threshold:
 - a. Press the Low Limit soft key.
 - **b.** Enter a value for the lower limit.
 - c. Press the dBm unit soft key.
- 7. Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 8. Optional. Go to **SAVE/LOAD** > **Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Measurement example

Figure 68 Power vs. time (frame) measurement with GSM signal analyzer

Conducting constellation measurements

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 144, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1. Press the MEASURE SETUP hot key.
- Press the Time Slot soft key to assign a time slot with which performs measurements, and then select your desired time slot number from 0 to 7.
- Press the Detect Mode soft key, and then select the signal standard option: Auto, GSM, or EDGE. Auto is set by default. The instrument applies a mask automatically based on the selected mode.
- Toggle the PSK Constellation soft key between On and Off to enable or disable the PSK constellation observation.

NOTE

The PSK constellation must be turned on to analyze EDGE signals.

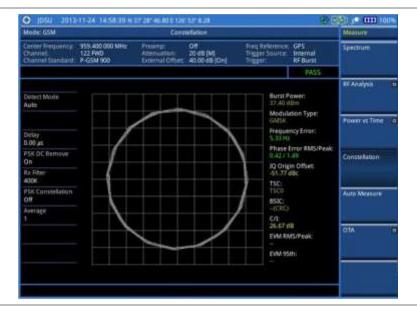
- 5. Optional. To set the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - **b.** Press the **Delay** soft key to set the amount of delay in μ s.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Setting limit for constellation

Procedure


- 1. Press the LIMIT hot key.
- 2. Press the Modulation Test Limits soft key to set the limits in the Constellation measurement.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:


To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit, Low Limit
Phase error rms	Phase Error RMS	High Limit, Low Limit
Phase error peak	Phase Error Peak	High Limit, Low Limit
Error vector magnitude rms	EVM RMS	High Limit
Error vector magnitude peak	EVM Peak	High Limit
I/Q origin offset of the I and Q error (magnitude squared) offset from the origin	IQ Origin Offset	High Limit
Carrier to interference (C/I) ratio	C/I	Low Limit

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Measurement example

Figure 69 Constellation measurement with GSM signal analyzer

NOTE

Measurement items such as IQ Origin Offset, C/I, EVM RMS/Peak and EVM 95th are applicable only to EDGE signal measurements.

Performing auto measurements

The Auto Measure function of the JD780A series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform tests on every aspect of all the carriers.

Setting limit for auto measure

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key, and then enable test limits as desired.
- 3. Press the PvsT Test Limits soft key, and then enable test limits as desired.
- 4. Press the Modulation Test Limits soft key, and then enable test limits as desired.
- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **6.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 144, you can continue your measurement. The measurement settings can be saved and recalled as a file. You

can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Toggle the Configuration soft key and select the configuration option:
 - Current: to let the instrumnet use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.
 - Scenario: to run a test with a programmed scenario in JDViewer.
 The Scenario menu becomes activated.
- 3. To load a scenario, press the **Scenario** soft key, and then select a scenario file to load.
- **4.** Toggle the **Test Time** soft key and select the test time option:
 - Now: to let the instrument run a test only once.
 - Schedule: to let the instrument repeat tests as defined in the Set Timing.
 The Set Timing menu becomes activated.
- **5.** To define a schedule for an auto measurement, complete the following steps:
 - a. Press the Set Timing soft key.
 - b. Press the Start Time (HH:MM) soft key.
 - c. Enter the time in the HH:MM format, and then press the Enter soft key.
 - d. Press the Stop Time (HH:MM) soft key.
 - e. Enter the time in the HH:MM format, and then press the Enter soft key.
 - Press the Time Interval soft key.
 - g. Enter the amount of time in minutes, and then press the Enter soft key.
- 7. To select the type of the measurement data to be taken for the determination of the results, press the **Data Type** soft key and then select the data type option fro the following choices:
 - Sample: The Auto Measure takes the last measurement data only.
 - RMS: The Auto Measure takes data from all 20 measurements and averages them.
 - Peak: The Auto Measure takes only the highest peak of all 20 measurements.
 - Negative Peak: The Auto Measure takes only the lowest peak of all 20 measurements.
- **6.** To set external offset, complete the following steps:
 - a. Toggle the External Offset soft key and select On.
 - b. Enter a value by using the numeric keys, and then press the dB soft key.
- 8. To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 33 for more information.
- **9.** Press the **Run Test** soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- 10. To stop running the test, press the **Abort** soft key.
- 11. To change the view on the screen during the test, press the **Display** and then select the view option from the following choices:
 - Screen: You can view each measurement screen as the test progresses.
 - Results: You can view a measurement result table as the test progresses.
 - Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

- 1. Toggle the **Display** soft key and select the display option:
 - Result: to view the result table. The Display Result menu becomes activated.
 - **Settings**: to view the measurement settings for the auto measurement.
- 2. Toggle the **Display Result** soft key and select the display result option:
 - Full: to view detailed measurement readings with the pass/fail indication.
 - Quick: to view only the Pass/Fail results.
- 3. To view the measurement results for a different carrier, press the **View Carrier** soft key and then select the carrier number to view.

Conducting GSM OTA measurements

This Over-The-Air (OTA) measurement has channel scanner, frequency scanner, multipath profile, and modulation analyzer screens. The GSM OTA has a function to display channel power and related information up to 128 GSM down link signals. This channel scanner can quickly identifies improper power levels that affect network performance. The transmitter performance can be made on a base station from the convenience of your vehicle without taking the base station out of service. It helps you to determine testing area's RF environmental condition with the multipath profile.

Channel scanner

Setting channel

- 1. Press the FREQ/DIST hard key.
- 2. To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - b. Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c. Press the **Select** soft key or the rotary knob to confirm the selection.
- 3. To set the starting channel to be scanned, complete the following steps:
 - a. Press the Channel Number soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 4. To set the amount of channel increment in scanning channels, complete the following steps:
 - a. Press the Channel Step soft key.
 - **b.** Enter a value by suing the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

- **5.** To set the number of channels to be displayed, complete the following steps:
 - a. Press the # of Channels soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

Setting zoom position

You can set the starting channel for the Zoom In Window.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Zoom Position soft key.
- **3.** Enter a value by using the numeric keys. You can also use the rotary knob.
- 4. Press the Enter soft key.

Setting limit for OTA channel scanner

- 1. Press the LIMIT hot key.
- 1. Press the Limit Line soft key to set a threshold for the limit line and Pass/Fail indication.
- 2. Enter a value, and then press the dBm unit soft key.
- 3. Toggle the Limit Line soft key between On and Off to display or dismiss the limit line.
- **4.** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 5. Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 70 Channel scanner measurement with GSM OTA signal analyzer

Frequency scanner

Setting frequency

Procedure

- 1. Press the FREQ/DIST hard key.
- **2.** To set the starting frequency to be scanned, complete the following steps:
 - a. Press the Start Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **3.** To set the amount of frequency increment in scanning frequencies, complete the following steps:
 - a. Press the Frequency Step soft key.
 - **b.** Enter a value by suing the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **4.** To set the number of frequencies to be displayed, complete the following steps:
 - a. Press the # of Frequencies soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

Setting zoom position

You can set the starting channel for the Zoom Window.

Procedure

1. Press the TRACE/DISPLAY hard key.

- 2. Press the Zoom Position soft key.
- 3. Enter a value by using the numeric keys. You can also use the rotary knob.
- 4. Press the Enter soft key.

Setting limit for OTA frequency scanner

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the Limit Line soft key to set a threshold for the limit line and Pass/Fail indication.
- 3. Enter a value, and then press the dBm unit soft key.
- 4. Toggle the Limit Line soft key between On and Off to display or dismiss the limit line.
- **5.** *Optional*. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- 6. Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Measurement example

Figure 71 Frequency scanner measurement with GSM OTA signal analyzer

Multipath profile

The Multipath Profile let you determine RF environmental conditions of testing area. The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 144, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the **Detect Mode** soft key, and then select the signal standard option: **Auto**, **GSM**, or **EDGE**. Auto is set by default. The instrument applies a mask automatically based on the selected mode.
- **3.** Optional. To set the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - **b.** Press the **Delay** soft key to set the amount of delay in μ s.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - **d.** Press the μ**s** soft key.
- **4.** Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 72 Multipath profile measurement with GSM OTA signal analyzer

Modulation analyzer

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 144, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1. Press the MEASURE SETUP hot key.
- Press the Detect Mode soft key, and then select the signal standard option: Auto, GSM, or EDGE. Auto is set by default. The instrument applies a mask automatically based on the selected mode.

- 3. Optional. To set the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - **b.** Press the **Delay** soft key to set the amount of delay in μ s.
 - c. Enter a value by using the numeric keys. You can also use the rotary knob.
 - **d.** Press the μ**s** soft key.
- **4.** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Setting limit for modulation analyzer

- 1. Press the LIMIT hot key.
- 2. Select the test item(s) and set the limit(s):

To set the limit for	Select	Set
Frame average power	Frame Average Power	High Limit Low Limit
Frequency error	Frequency Error	High Limit Low Limit
Burst power	Burst Power	High Limit Low Limit
ACLR	ACLR	(On/Off only)
Multi-ACLR	Multi-ACLR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- **3.** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Measurement example

Figure 73 Modulation analyzer measurement with GSM OTA signal analyzer

Using WCDMA/HSPA+ Signal Analyzer

This chapter provides instructions for using the WCDMA/HSPA+ Signal Analyzer function (option 023) with the WCDMA/HSPA+ OTA Analyzer function (option 043). Topics discussed in this chapter are as follows:

=	Introduction	171
	Display overview	171
	Connecting a cable	172
	Selecting measurement mode	174
	Configuring test parameters	174
	Conducting spectrum measurements	179
	Conducting RF measurements	180
	Conducting modulation measurements	187
	Performing auto measurements	199
	Performing power statistics CCDF measurement	201
	Conducting WCDMA/HSPA+ OTA measurements	202

Introduction

This WCDMA/HSPA+ Signal Analyzer can be used to test a WCDMA transmitter including HSDPA/HSPA+ signals to check the base station's compliance with following standards documentation.

- 3GPP TS 25.104 Base Station radio transmission and reception
- 3GPP TS 25.141 Base Station (BS) conformance test
- 3GPP TS 25.211 Physical channel and mapping of transport channels onto physical channels
- 3GPP TS 25.212 Multiplexing and channel coding
- 3GPP TS 25.213 Spreading and modulation

The instrument automatically makes standard defined measurements using the measurement methods and limits as defined in the standards. Detailed measurement results allow you to analyze WCDMA and HSPA+ system performance. You may alter the measurement parameters for specialized analysis. Pass/Fail testing with standard defined or user defined upper and lower limits and the Pass/Fail indictor help you to determine base station performance easily.

This instrument provides the following measurement tools for WCDMA/HSPA+ system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask (SEM)
 - Adjacent Channel Leakage power Ratio (ACLR)
 - Multi-ACLR
 - Spurious Emissions
- Modulation Analysis
 - Constellation
 - Code Domain Power
 - Relative Code Domain Error
 - Codogram
 - Received Code Strength Indicator (RCSI)
 - CDP Table
- Auto Measure
- Power Statistics CCDF
- Over The Air (OTA)
 - Channel Scanner
 - Scramble Scanner
 - Multipath Profile
 - Code Domain Power
 - Route Map

Display overview

Figure 74 provides descriptions for each segment of the measurement screen.

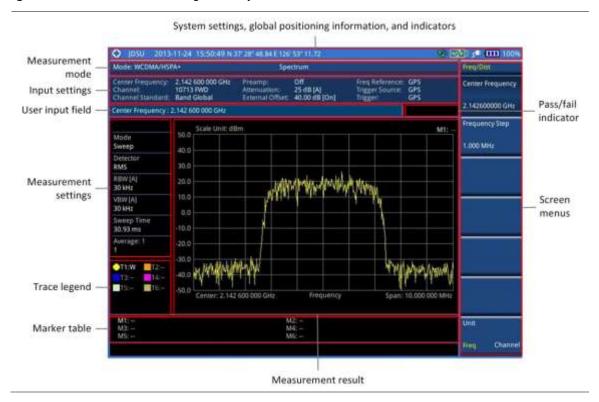


Figure 74 WCDMA/HSPA+ signal analyzer measurement screen

Connecting a cable

Direct connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the power amplifier output port of BTS.

Figure 75 Direct connection


Indirect connection

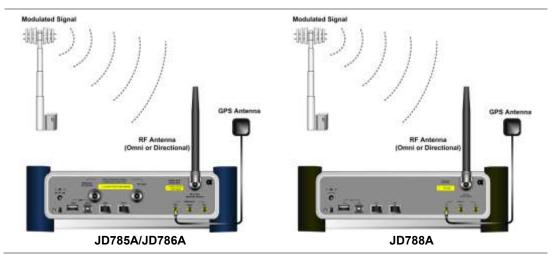
Procedure

1. Connect the Spectrum Analyzer RF In port of the JD780A series and the monitor (test) port of

BTS.

Figure 76 Indirect connection

CAUTION


The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

Procedure

- Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD780A series.
- 2. Connect a GPS antenna to the GPS port of the JD780A series.

Figure 77 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Press the Signal Analyzer soft key.
- 3. Press the WCDMA soft key. The Spectrum mode is set by default.
- 4. Press the MEASURE hot key, and then select the measurement mode option from the following choices:
 - Spectrum
 - RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACLR, Multi-ACLR, or Spurious Emissions
 - Modulation > Constellation, Code Domain Power, Relative Code Domain Error, Codogram, RCSI, or CDP Table
 - Auto Measure
 - Power Statistics CCDF
 - OTA > Channel Scanner, Scramble Scanner, Multipath Profile, Code Domain Power, or Route Map

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Center Frequency soft key.
- **4.** Enter a value by using the numeric keys. You can also use the rotary knob.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a. Press the Frequency Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- 3. To select the standard channel, complete the following steps:
 - Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more

information.

- b. Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
- **c.** Press the **Select** soft key or the rotary knob to confirm the selection.
- 4. Press the Channel Number soft key.
- 5. Enter a value by using the numeric keys. You can also use the rotary knob.
- 6. Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- **7.** Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a. Press the Channel Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

NOTE

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- 2. Press the Auto Scale soft key.

 Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- **2.** To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the unit soft key or the ENTER hard key.

NOTE

In the measurements such as **Code Domain Power**, **Codogram**, and **RCSI**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

- 3. To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - **b.** Press the **Attenuation Value** soft key to set the level.
 - **c.** Enter a value between 0 and 55 in fives by using the numeric keys.
 - d. Press the dB soft key or the ENTER hard key.
- To couple the input attenuator's level with your reference level setting, select Attenuation
 Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- **3.** Enter a value between 1 and 20 by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the **Preamp** soft key and select **On** or **Off** as needed.

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the External Offset on and manually set the external offset value. An offset consists of a

cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select On.
- 3. Enter a value by using the numeric keys.
- **4.** Press the **dB** soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.
- 3. Enter a value between 1 and 100 as needed by using the numeric keys.
- 4. Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1. Press the SWEEP hot key.
- Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3. Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

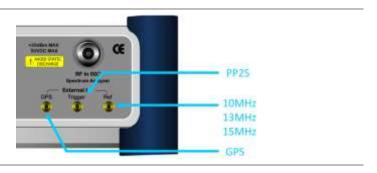
 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.

Procedure

- 1. Press the TRIGGER hot key.
- 2. Select the trigger source option from the following choices: Internal, External, or GPS.


Setting external clock

To enhance the reliability of modulation analysis measurements the JD780A series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

 Table 11
 Standards of external clock operation

Clock	Туре	Reference	Port	Switching Standard
External Reference	Internal	Internal 10 MHz		Default
	External	External Ref Clock	Ext Ref (SMA)	Manual switching (Input signal level >-3 dBm)
	GPS	GPS Clock	GPS (SMA)	Automatic switching (GPS signal received)
Trigger	Internal	Internal Trigger		Default
	External	External Trigger	Trigger (SMA)	Manual switching
	GPS	GPS	GPS (SMA)	Manual switching

Figure 78 Connection ports for external reference clock

Procedure

- 1. Connect an external reference or a GPS antenna to the JD780A series.
- 2. Press the SYSTEM hot key.
- Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

NOTE

When a GPS antenna is connected and locked, GPS coordinates (longitude and latitude) are displayed on the screen and frequency reference is automatically set to GPS in the **System > Freq Reference**.

 Table 12
 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

If you have configured test parameters as described in the "Configuring test parameters" on page 174, your measurement result is displayed on the screen as like the following example, Figure 79.

Figure 79 Spectrum measurement screen with WCDMA signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

1. Press the TRACE/DISPLAY hard key.

- 2. Press the **Select Trace** soft key, and then select the trace number: **T1**, **T2**, **T3**, **T4**, **T5**, or **T6**. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- **3.** Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	М
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or the rotary knob.

4. To select the detection option, press the More (1/2) > Detectors, and then do one of the following:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- Optional. Press the More (1/2) > Trace Info soft key, and then select the trace number to view
 the trace's parameter setting information stored at the time of the measurement or None to hide
 the information display.
- 6. Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. This procedure measures the total power within the defined channel for WCDMA. This measurement is applied to design, characterize, evaluate, and verify transmitters and their components or devices for base stations and mobile

stations.

The channel power measurement identifies the channel power within a specified bandwidth (default is 5 MHz, as per the 3GPP WCDMA technical specifications) and the power spectral density (PSD) in dBm/Hz.

After configuring test parameters as described in the "Configuring test parameters" on page 174, your measurement result is displayed on the screen as like the following example, Figure 80.

Figure 80 Channel power measurement with WCDMA/HSPA+ signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 186 for more information.

Occupied bandwidth

The 3GPP specifications require the occupied bandwidth (OBW) of a transmitted WCDMA signal to be less than 5 MHz, where occupied bandwidth is defined as the bandwidth containing 99% of the total channel power. In this measurement, the total power of the displayed span is measured. Then the power is measured inward from the right and left extremes until 0.5% of the power is accounted for each of the upper and lower part of the span and the calculated difference is the occupied bandwidth.

The spectrum shape of a WCDMA signal can give a useful qualitative insight into the transmitter's operation. Any distortion to the spectrum shape might be an indication of degradation of the transmitter's performance.

After configuring test parameters as described in the "Configuring test parameters" on page 174, your measurement result is displayed on the screen as like the following example, Figure 81.

Figure 81 Occupied bandwidth measurement with WCDMA/HSPA+ signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 186 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates them to the carrier power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 174, you can set the mask type according to the output power of the base station be tested. Your measurement result is displayed on the screen as like the following example, Figure 82.

- 1. Press the MEASURE SETUP hot key.
- 2. Press the Mask Type soft key.
- 3. Select the mask type option: 31 dBm, 31 39 dBm, 39 43 dBm, or 49 dBm -.

Figure 82 SEM measurement with WCDMA/HSPA+ signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 186 for more information.

ACLR

The Adjacent Channel Power Ratio (ACPR), designated by the 3GPP WCDMA specifications as the Adjacent Channel Leakage power Ratio (ACLR), is the power contained in a specified frequency channel bandwidth relative to the total carrier power. It may also be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band.

After configuring test parameters as described in the "Configuring test parameters" on page 174, your measurement result is displayed on the screen as like the following example, Figure 83.

Figure 83 ACLR measurement with WCDMA/HSPA+ signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 186 for more information

Multi-ACLR

The Multi-ACLR measurement is used to perform multi-channel ACLR measurements with as many channels as possible. It helps you to measure ACLR in multi-channel transmitting Base Station environment.

Setting frequency for Multi-ACLR

You can set the frequency with either frequency or channel number.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the frequency, do one of the following:
 - To set the center frequency, complete the following steps:
 - a. Toggle the **Unit** soft key and select **Freq**.
 - **b.** Press the **Lowest Frequency** soft key to set the starting center frequency.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Select the unit: GHz, MHz, kHz, or Hz.
 - e. Press the **Highest Frequency** soft key to set the stopping center frequency.
 - **f.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - g. Select the unit: GHz, MHz, kHz, or Hz.
 - To set the channel number, complete the following steps:
 - a. Toggle the Unit soft key and select Channel.
 - **b.** To select the standard channel, press the **Channel Std** soft key and then select the band to be measured.
 - c. Press the Lowest Channel soft key to set the starting channel.
 - **d.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - e. Press the Enter soft key.
 - f. Press the **Highest Channel** soft key to set the stopping channel.
 - **g.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - h. Press the Enter soft key.

After configuring test parameters, your measurement result is displayed on the screen as like the following example, **Figure 84**.

Figure 84 Multi-ACLR measurement with WCDMA/HSPA+ signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 186 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

- 1. Press the MEASURE SETUP hot key.
- 2. To set up the range table and parameters, press the **Range Table** soft key and then complete the following steps:
 - **a.** Press the **Range** soft key, and then select the range number between **1** and **20** to add as a new or change the existing settings.
 - **b.** Do the following as desired:
 - Select **Start Frequency**, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.
 - c. Press the PREV hard key.

- d. Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3. Toggle the Measure Type soft key between Examine and Full to select the measurement type.

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 4. To set the number of measurements to be averaged, complete the following steps:
 - a. Press the Average soft key.
 - b. Enter a value between 1 and 100.
 - c. Press the Enter soft key.
- 5. To move the highlighted bar in the result table to other range, complete the following steps:
 - a. Press the Range soft key in the Measure Setup menu bar.
 - b. Enter a value between 1 and 20.
 - c. Press the Enter soft key.

After configuring test parameters as described in the "Configuring test parameters" on page 174, your measurement result is displayed on the screen as like the following example, Figure 85.

Figure 85 Spurious emissions measurement with WCDMA/HSPA+ signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 186 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

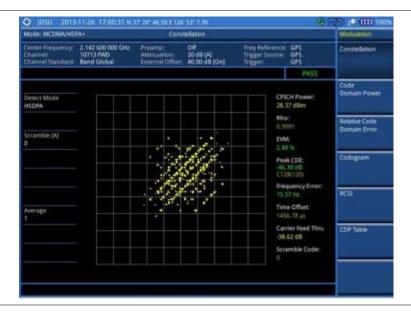
To set the limit for	Select	Set
Channel power	Channel Power	High Limit Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACLR	ACLR	(On/Off only)
Multi-ACLR	Multi-ACLR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Conducting modulation measurements

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.


Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 174, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the scramble code, complete the following steps:
 - a. Toggle the Scramble soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.
- 4. To set the threshold, complete the following steps:
 - a. Press the Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

Measurement example

Figure 86 Constellation measurement with WCDMA/HSPA+ signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 199 for more information.

Code domain power

The Code Domain Power (CDP) measures the distribution of power across the set of code channels, normalized to the total power. It helps to verify that each code channel is operating at its proper level and to identify problems throughout the transmitter design from coding to the RF section. System imperfections such as amplifier non-linearity will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 174, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. Optional. To set the scramble code, complete the following steps:
 - a. Toggle the Scramble soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. Optional. Press the **Detect Mode** soft key, and then select the signal standard option: **WCDMA**, **HSDPA**, or **HSPA+**. HSDPA is set by default.
- 4. To set the S-CCPCH information of the system to be tested, complete the following steps:
 - a. Press the S-CCPCH soft key.

- b. Toggle the S-CCPCH soft key between On and Off to enable or disable the S-CCPCH.
- Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
- d. Press the Spread Code soft key to set the spread code.
- e. Enter a value by using the numeric keys.
- f. Press the Enter soft key.
- **5.** To set the PICH information of the system to be tested, complete the following steps:
 - a. Press the PICH soft key.
 - b. Toggle the PICH soft key between On and Off to enable or disable the PICH.
 - c. Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d. Press the Spread Code soft key to set the spread code.
 - e. Enter a value by using the numeric keys.
 - f. Press the Enter soft key.
- **6.** Optional. To set the threshold, complete the following steps:
 - a. Press the Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

Measurement example

Figure 87 Code domain power measurement with WCDMA/HSPA+ signal analyzer

1) Full screen

2) Full screen with constellation

3) Zoomed screen (Width 64)

4) Zoomed screen with constellation (Width 64)

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 199 for more information.

Setting display

You can view .your measurement results in a different view option.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Toggle the View soft key and select the display option:
 - Zoom: to view the result in detail with zoom-in window.
 The Position and Width menus become activated.
 - Full: to view the full measurement result.
- **3.** To define the zoom start position and width, complete the following steps:
 - a. Press the Position soft key.
 - **b.** Enter a value of the position by using the numeric keys.
 - c. Press the Enter soft key.
 - d. Press the Width soft key, and then select the Walsh code option: 32, 64, 128, or 256.
- **4.** Toggle the **Constellation** soft key between **On** and **Off** to enable or disable the constellation chart on the Code Domain Power screen.
- 5. Toggle the **Control Channel** soft key and select the control channel mode option:
 - Normal: to view the relative ratio of each control channel vs. total power.
 - Delta: to view the relative ratio of each control channel vs. CPICH channel.

Relative code domain power

The Relative Code Domain Error (RCDE) measurement provides relative code domain error analysis that is particularly required by HSPA+.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 174, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Optional. To set the scramble code, complete the following steps:
 - a. Toggle the Scramble soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. Optional. Press the **Detect Mode** soft key, and then select the signal standard option: **WCDMA**, **HSDPA**, or **HSPA+**. HSDPA is set by default.

It is recommended that you select HSPA+ for RCDE testing.

- 4. To set the S-CCPCH information of the system to be tested, complete the following steps:
 - a. Press the S-CCPCH soft key.
 - b. Toggle the S-CCPCH soft key between On and Off to enable or disable the S-CCPCH.
 - c. Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d. Press the **Spread Code** soft key to set the spread code.
 - e. Enter a value by using the numeric keys.
 - f. Press the Enter soft key.
- 5. To set the PICH information of the system to be tested, complete the following steps:
 - a. Press the PICH soft key.
 - b. Toggle the PICH soft key between On and Off to enable or disable the PICH.
 - c. Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d. Press the Spread Code soft key to set the spread code.
 - e. Enter a value by using the numeric keys.
 - f. Press the Enter soft key.
- **6.** Optional. To set the threshold, complete the following steps:
 - a. Press the Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available
 for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 88 Relative code domain error with WCDMA/HSPA+ signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 199 for more information.

Setting display

You can view .your measurement results in a different view option.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Toggle the View soft key and select the display option:
 - Zoom: to view the result in detail with zoom-in window.
 The Position and Width menus become activated.
 - Full: to view the full measurement result.
- **3.** To define the zoom start position and width, complete the following steps:
 - a. Press the Position soft key.
 - **b.** Enter a value of the position by using the numeric keys.
 - c. Press the Enter soft key.
 - d. Press the Width soft key, and then select the Walsh code option: 32, 64, 128, or 256.
- **4.** Toggle the **Constellation** soft key between **On** and **Off** to enable or disable the constellation chart on the Code Domain Power screen.
- 5. Toggle the **Control Channel** soft key and select the control channel mode option:
 - Normal: to view the relative ratio of each control channel vs. total power.
 - Delta: to view the relative ratio of each control channel vs. CPICH channel.

Codogram

The Codogram displays how the code level is changing over time and makes it easier for you to view traffic channels as they initiate and terminate and to track traffic channels call levels over time. The Codogram measurements can be saved into an external USB memory so that a post-analysis can be done with the application software JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 174, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Optional. To set the scramble code, complete the following steps:
 - a. Toggle the **Scramble** soft key between **Auto** and **Manual**.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.

- Optional. Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.
- 4. To set the S-CCPCH information of the system to be tested, complete the following steps:
 - a. Press the S-CCPCH soft key.
 - b. Toggle the S-CCPCH soft key between On and Off to enable or disable the S-CCPCH.
 - c. Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d. Press the Spread Code soft key to set the spread code.
 - e. Enter a value by using the numeric keys.
 - f. Press the Enter soft key.
- 5. To set the PICH information of the system to be tested, complete the following steps:
 - a. Press the PICH soft key.
 - b. Toggle the PICH soft key between On and Off to enable or disable the PICH.
 - c. Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d. Press the Spread Code soft key to set the spread code.
 - e. Enter a value by using the numeric keys.
 - f. Press the Enter soft key.
- 6. Optional. To set the threshold, complete the following steps:
 - a. Press the Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 7. To set the time interval, complete the following steps:
 - a. Press the Time Interval soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 8. To place the time cursor to analyze your measurements, complete the following steps:
 - a. Toggle the Time Cursor soft key between On and Off to enable or disable the time cursor.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

When the time cursor is enabled, the measurement is put on hold and information about the time cursor is displayed.

 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 89 Codogram in full view with WCDMA/HSPA+ signal analyzer

Setting display

You can view .your measurement results in a different view option.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Toggle the **View** soft key and select the display option:
 - Zoom: to view the result in detail with zoom-in window.
 The Position and Width menus become activated.
 - Full: to view the full measurement result.
- **3.** To define the zoom start position and width, complete the following steps:
 - a. Press the Position soft key.
 - **b.** Enter a value of the position by using the numeric keys.
 - c. Press the Enter soft key.
 - d. Press the Width soft key, and then select the Walsh code option: 32, 64, 128, or 256.

RCSI

The Received Code Strength indicator (RCSI) is used to track the code channels such as CPICH, P-CCPCH, S-CCPCH, PICH, P-SCH, and S-SCH. It is particularly useful to observe signal fluctuations of the dedicated control channels over the time. The RCSI measurements can be saved into an external USB memory so that a post-analysis can be done with the application software JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 174, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Optional. To set the scramble code, complete the following steps:
 - a. Toggle the Scramble soft key between Auto and Manual.
 - b. Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- Optional. Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.
- 4. To set the S-CCPCH information of the system to be tested, complete the following steps:
 - a. Press the S-CCPCH soft key.
 - **b.** Toggle the **S-CCPCH** soft key between **On** and **Off** to enable or disable the S-CCPCH. Setting this on makes the S-CCPCH in the Alarm Code menu activated.
 - c. Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - **d.** Press the **Spread Code** soft key to set the spread code.
 - e. Enter a value by using the numeric keys.
 - f. Press the Enter soft key.
- 5. To set the PICH information of the system to be tested, complete the following steps:
 - a. Press the PICH soft key.
 - b. Toggle the PICH soft key between On and Off to enable or disable the PICH. Setting this on makes the PICH in the Alarm Code menu activated.
 - c. Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - $\mbox{\bf d.} \quad \mbox{Press the $\mbox{\bf Spread Code}$ soft key to set the spread code}.$
 - e. Enter a value by using the numeric keys.
 - f. Press the Enter soft key.
- 6. Optional. To set the threshold, complete the following steps:
 - a. Press the Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- Press the Alarm Code soft key, and then select the alarm code option: None, CPICH, P-CCPCH, S-CCPCH, PICH, P-SCH, or S-SCH.

NOTE

The alarm codes S-CCPCH and PICH become activated in case that you have enabled the S-CCPCH and PICH respectively.

- 8. To set the alarm mask, complete the following steps:
 - a. Press the Set Mask soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft kev.
- Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 90 RCSI measurement with WCDMA/HSPA+ signal analyzer

Setting display

You can view .your measurement results in a different view option.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Toggle the View soft key and select the display option:
 - Zoom: to view the result in detail with zoom-in window.
 The Position and Width menus become activated.
 - Full: to view the full measurement result.
- **3.** To define the zoom start position and width, complete the following steps:
 - a. Press the Position soft key.
 - **b.** Enter a value of the position by using the numeric keys.
 - c. Press the Enter soft key.
 - d. Press the Width soft key, and then select the Walsh code option: 32, 64, 128, or 256.

CDP Table

The CDP Table is used to look at a numeric and textual description of all the active code channels in the signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 174, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Optional. To set the scramble code, complete the following steps:
 - a. Toggle the Scramble soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- Optional. Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.
- 4. To set the S-CCPCH information of the system to be tested, complete the following steps:
 - a. Press the S-CCPCH soft key.
 - b. Toggle the S-CCPCH soft key between On and Off to enable or disable the S-CCPCH.
 - c. Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d. Press the Spread Code soft key to set the spread code.
 - e. Enter a value by using the numeric keys, and then press the Enter soft key.
- 5. To set the PICH information of the system to be tested, complete the following steps:
 - a. Press the PICH soft key.
 - b. Toggle the PICH soft key between On and Off to enable or disable the PICH.
 - c. Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d. Press the Spread Code soft key to set the spread code.
 - e. Enter a value by using the numeric keys, and then press the Enter soft key.
- 6. Optional. To set the threshold, complete the following steps:
 - a. Press the Threshold soft key.
 - **b.** Enter a value by using the numeric keys, and then press the **Enter** soft key.

Measurement example

Figure 91 CDP Table measurement with WCDMA/HSPA+ signal analyzer

Setting display

If the CDP table spans over to the next page(s), you can change pages up and down to view .your measurement results.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Select Page Up or Page Down as needed.

Setting limit for modulation tests

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the Modulation Test Limits soft key to set the limits.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit Low Limit
Error vector magnitude	EVM	High Limit
Peak code domain error	PCDE	High Limit
Carrier feed through	Carrier Feed Through	High Limit
Correlated power in coded channel	CPICH	High Limit [Abs Rel] Low Limit [Abs Rel]
Highest level among inactive channels	Max Inactive	High Limit
Relative code domain error	RCDE	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM)

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

NOTE

The Carrier Feed Through is a result of the RF carrier signal feeding through the I/Q modulator and riding on the output circuitry without being modulated.

Performing auto measurements

The Auto Measure function of the JD780A series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform tests on every aspect of all the carriers.

Setting limit for auto measure

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key, and then enable test limits as desired.
- 3. Press the Modulation Test Limits soft key, and then enable test limits as desired.
- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 174, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. Toggle the Configuration soft key and select the configuration option:
 - Current: to let the instrumnet use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.
 - Scenario: to run a test with a programmed scenario in JDViewer.
 The Scenario menu becomes activated.
- 3. To load a scenario, press the Scenario soft key, and then select a scenario file to load.
- **4.** Toggle the **Test Time** soft key and select the test time option:
 - Now: to let the instrument run a test only once.
 - Schedule: to let the instrument repeat tests as defined in the Set Timing.
 The Set Timing menu becomes activated.
- 5. To define a schedule for an auto measurement, complete the following steps:
 - a. Press the Set Timing soft key.
 - b. Press the Start Time (HH:MM) soft key.
 - c. Enter the time in the HH:MM format, and then press the Enter soft key.
 - d. Press the Stop Time (HH:MM) soft key.
 - e. Enter the time in the HH:MM format, and then press the Enter soft key.
 - f. Press the Time Interval soft key.
 - g. Enter the amount of time in minutes, and then press the Enter soft key.
- 6. To select the type of the measurement data to be taken for the determination of the results, press the Data Type soft key and then select the data type option from the following choices:
 - Sample: The Auto Measure takes the last measurement data only.
 - RMS: The Auto Measure takes data from all 20 measurements and averages them.

- Peak: The Auto Measure takes only the highest peak of all 20 measurements.
- Negative Peak: The Auto Measure takes only the lowest peak of all 20 measurements.
- **7.** To set external offset, complete the following steps:
 - a. Toggle the External Offset soft key and select On.
 - b. Enter a value by using the numeric keys, and then press the dB soft key.
- **8.** To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 33 for more information.
- Press the Run Test soft key to start to run a test.
 The Auto Measure Results window appears at the end of the test.
- 10. To stop running the test, press the Abort soft key.
- 11. To change the view on the screen during the test, press the Display and then select the view option from the following choices:
 - Screen: You can view each measurement screen as the test progresses.
 - Results: You can view a measurement result table as the test progresses.
 - Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

- 1. Toggle the **Display** soft key and select the display option:
 - Result: to view the result table.
 The Display Result menu becomes activated.
 - Settings: to view the measurement settings for the auto measurement.
- **2.** Toggle the **Display Result** soft key and select the display result option:
 - Full: to view detailed measurement readings with the pass/fail indication.
 - Quick: to view only the Pass/Fail results.
- 3. To view the measurement results for a different carrier, press the **View Carrier** soft key and then select the carrier number to view.

Performing power statistics CCDF measurement

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 174, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the CCDF Length soft key to set the length of the CCDF.
- 3. Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4. Press the Enter soft key.

Measurement example

Figure 92 CCDF measurement with WCDMA/HSPA+ signal analyzer

Conducting WCDMA/HSPA+ OTA measurements

This Over The Air (OTA) measurement has channel scanner, scramble scanner, multipath profile, code domain power, and route map screens. Scramble scanner displays six scrambling codes and powers to inform neighbor cells existence and its power. The multipath profile graph helps you to determine testing area's RF environmental condition. The code domain power shows not only modulation performance metric but also amplifier capacity and code utilization metric. The amplifier capacity (code utilization) measurement is an estimate of the amount of power amplifier capacity (code utilization) that is being used expressed in percent of maximum.

Channel scanner

Setting channel/frequency

Procedure

To set the channels to be scanned:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- **3.** Press the **Index** soft key, and then enter an index number by turning the rotary knob or using the numeric keys.

- **4.** To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - b. Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c. Press the **Select** soft key or the rotary knob to confirm the selection.
- **5.** To set the channel number for the selected index, complete the following steps:
 - a. Press the Channel Number soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

The instrument displays a corresponding center frequency for the channel number.

- **6.** To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - b. Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 7. To add more channels to be scanned, repeat steps 3-6.
- 8. Press the ESC hard key to dismiss the channel list window and view the scanning result.

To set the frequencies to be scanned:

- 1. Press the FREQ/DIST hard key.
- Toggle the Unit soft key and select Freq.
- 3. Press the **Index** soft key, and then enter an index number by turning the rotary knob or using the numeric keys.
- **4.** To set the center frequency for the selected index, complete the following steps:
 - a. Press the Center Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **5.** To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 6. To add more channels to be scanned, repeat steps 3-5.
- 7. Press the ESC hard key to dismiss the channel list window and view the scanning result.

Setting limit for OTA channel scanner

- 1. Press the LIMIT hot key.
- 2. Press the Limit Line soft key to set a threshold for the limit line and Pass/Fail indication.
- 3. Enter a value, and then press the dBm unit soft key.
- 4. Toggle the Limit Line soft key between On and Off to display or dismiss the limit line.
- 5. Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.

6. Optional. Go to **SAVE/LOAD** > **Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Measurement example

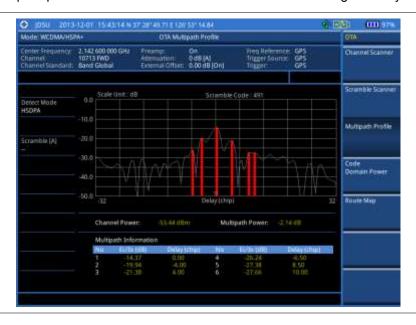
Figure 93 Channel scanner measurement with WCDMA/HSPA+ OTA signal analyzer

Scramble scanner

The WCDMA/HSPA+ mobile receives signals from multiple base stations that all of these signals share the same spectrum and are present at the same time. Each base station has a unique scrambling code assigned to the particular base station and it differentiates its signal from other base stations in the area.

Measurement example

Figure 94 Scramble scanner measurement with WCDMA/HSPA+ OTA signal analyzer


Multipath profile

The Multipath Profile enables you to determine RF environmental conditions of testing area. It indicates the amount of power of the dominant pilot signal that is dispersed outside the main correlation peak due to multipath echoes that are expressed in dB. This value should be very small ideally.

The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Measurement example

Figure 95 Multipath profile measurement with WCDMA/HSPA+ OTA signal analyzer

Code domain power

Channels with high correlation factors are determined to be active channels and are indicated as such on the display. Once the channels are decoded, the analyzer determines the power of each channel relative to the total signal power.

This measurement helps to verify that each code channel is operating at its proper level and helps to identify problems throughout the transmitter design from the coding to the RF section. System imperfections, such as the non-linearity of amplifiers, will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

After configuring test parameters, you can set the measure setup to continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

1. Press the MEASURE SETUP hot key.

- 2. To set the scramble code, complete the following steps:
 - a. Toggle the Scramble soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- Press the Detect Mode soft key, and then select the signal standard option: WCDMA, HSDPA, or HSPA+. HSDPA is set by default.
- 4. To set the threshold, complete the following steps:
 - a. Press the Threshold soft key.
 - b. Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 5. To set the S-CCPCH information of the system to be tested, complete the following steps:
 - a. Press the S-CCPCH soft key.
 - **b.** Toggle the **S-CCPCH** soft key between **On** and **Off** to enable or disable the S-CCPCH.
 - c. Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d. Press the Spread Code soft key to set the spread code.
 - e. Enter a value by using the numeric keys.
 - Press the Enter soft key.
- 6. To set the PICH information of the system to be tested, complete the following steps:
 - a. Press the PICH soft key.
 - b. Toggle the PICH soft key between On and Off to enable or disable the PICH.
 - Press the Spread Factor soft key, and then select the spread factor option: 4, 8, 16, 32, 64, 128, or 256.
 - d. Press the **Spread Code** soft key to set the spread code.
 - e. Enter a value by using the numeric keys.
 - f. Press the Enter soft key.
- 7. To set the maximum amplifier power, complete the following steps:
 - a. Press the Max Amplifier Power soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dBm soft key.
- 8. To set the CPICH power, complete the following steps:
 - a. Press the More (1/2) soft key.
 - b. Press the CPICH soft key.
 - c. Enter a value by using the numeric keys.
 - d. Press the dBm soft key.
- 9. To set the threshold for CPICH dominance, complete the following steps:
 - a. Press the CPICH Dominance > soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

Recommended value is 10. Color of the CPICH Dominance indicator on the screen bases on this setting.

10. To set the threshold for multipath power, complete the following steps:

- a. Press the Multipath Power < soft key.
- b. Enter a value by using the numeric keys.
- c. Press the Enter soft key.

Recommended value is one. Color of the multipath power indicator on the screen bases on this setting.

11. Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 96 Code domain power measurement with WCDMA/HSPA+ OTA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication.

Route map

The JD780A series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

If you have obtained user experience data through Viavi's ariesoGEO and generated raster data files from the application, you can load them onto your route map to help you troubleshoot problems easily and quickly.

Setting measure setup

Procedure

 If required, connect a GPS receiver to your JD780A series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.

- 2. Configure test parameters as described in the "Configuring test parameters" on page 174.
- 3. To load your map file, complete the following steps:
 - a. Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator.

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display.

- b. Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4. Press the **MEASURE SETUP** hot key.
- 5. Press the Plot Point soft key, and then select the plot point option from the following choices:
 - To collect data/plot points automatically as you move around in a vehicle or outside, press
 the GPS soft key and then toggle the Screen Mode soft key between Map and Full.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

- To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.
- **6.** Press the **Plot Item** soft key, and then select the measurement option: **CPICH Power** or **Ec/lo**.
- 7. Toggle the Plot soft key and select Start.
- 8. Touch directly on the screen or press the **ENTER** hard key to collect data and plot points on the loaded map for the **Position** setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 9. Toggle the Plot soft key and select Stop to stop plotting.
- Press the SAVE/LOAD hot key to save the result. See "Using save" on page 33 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit

You can set the thresholds for the four different color indicators for CPICH power or Ec/lo.

- 1. Press the LIMIT hot key.
- 2. To set the limits for CPICH power if you have selected CPICH as for the plot item, complete the following steps:
 - a. Press the CPICH Power soft key.
 - **b.** Press the **Excellent** soft key to set its threshold.
 - **c.** Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.

- d. Press the Very Good soft key to set its threshold.
- **e.** Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
- f. Press the Good soft key to set its threshold.
- **g.** Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
- h. Press the Fair soft key to set its threshold.
- i. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
- j. Press the Poor soft key to set its threshold.
- **k.** Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
- 3. To set the limits for Ec/lo if you have selected as for the plot item , complete the following steps:
 - a. Press the Ec/lo soft key.
 - b. Press the Good soft key to set its threshold.
 - **c.** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
 - d. Press the Fair soft key to set its threshold.
 - **e.** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
 - f. Press the Poor soft key to set its threshold.
 - g. Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings.
 See "Using save" on page 33 for more information.

Measurement example

Figure 97 Route map measurement with WCDMA/HSPA+ OTA signal analyzer

1) CPICH Power

2) CPICH Ec/lo

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- 3. Do one of the following:
 - To zoom into an area of interest directly, complete the following steps:
 - **a.** Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
 - **b.** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.
 - **c.** Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
 - **d.** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.
 - To zoom into the center or zoom out from the center, complete the following steps:
 - a. Toggle the Zoom to soft key and select Center.
 - **b.** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
 - **c.** Move the zoomed-in area by using the four arrow keys, as you need.

Loading and displaying raster data

If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your base map to help you check the signal quality and the strength of interferences while driving toward the area of interest.

- 1. Copy a set of raster data files into your USB memory drive, including the following:
 - ASCII: .tab, .asc, and .clr files
 - BIL: .tab, .hdr, .bil, and .clr files

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.

- 2. Plug in the USB memory drive to your instrument.
- 3. Press the TRACE/DISPLAY hard key.
- **4.** Press the **Load Raster Map** soft key. The file explorer window appears.
- 5. Navigate to the raster file (.tab) you want to open, and then press the **Load** soft key. The raster image appears on top of your base map as shown in **Figure 98**.

NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **6.** To select the display option, complete the following steps:
 - a. Press the Display Options soft key.
 - b. Select the option you desire from the choices: On, Off, and Blink.
- 7. To adjust the transparency level of the image, complete the following steps:
 - a. Press the Transparency soft key.
 - b. Enter a value between 0 for opaque and 100 for clear.
 - c. Press the Enter soft key.

Figure 98 Raster image overlaid on the route map in WCDMA/HSPA+ OTA signal analyzer

Using LTE - FDD Signal Analyzer

This chapter provides instructions for using the LTE - FDD Signal Analyzer (option 028) and LTE-Advanced FDD Analyzer (option 030) with the LTE - FDD OTA Analyzer (option 048), LTE-FDD 256 QAM Demodulator (option 032), and the LTE-FDD RAN Performance Indicator (option 014). Topics discussed in this chapter are as follows:

=	Introduction	213
	Display overview	214
	Connecting a cable	214
	Selecting measurement mode	216
	Configuring test parameters	216
	Conducting spectrum measurements	221
	Conducting RF measurements	223
	Conducting power vs. time (frame) measurements	231
	Conducting modulation measurements	232
	Performing auto measurements	253
	Performing power statistics CCDF measurements	260
	Performing carrier aggregation measurements	261
	Conducting LTE - FDD OTA measurements	264
	Performing RAN performance testing	278
	Performing NB-IoT modulation analysis	281

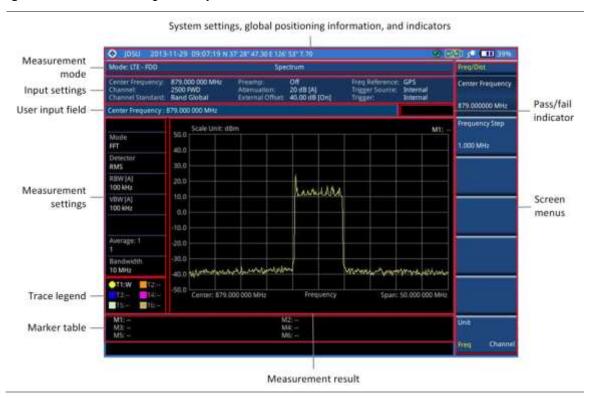
Introduction

The LTE (Long-Term Evolution) Signal Analyzer of the JD780A series performs power and spectrum measurements as well as modulation analysis to test the proper transmitter performance of FDD LTE systems. It performs conformance testing according to the following standards providing a simple Pass/Fail indication on each test.

- 3GPP TS 36.104. Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and Reception
- 3GPP TS 36.141. Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS)
 Conformance Testing
- 3GPP TS 36.211. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation
- 3GPP TS 36.212. Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and Channel Coding
- 3GPP TS 36.213 V8.2.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures

This instrument provides the following measurement tools for FDD LTE system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - Adjacent Channel Leakage power Ratio (ACLR)
 - Multi-ACLR
 - Spurious Emissions
- Power vs. Time (Frame)
- Modulation Analysis
 - Constellation
 - Data Channel
 - Control Channel
 - Subframe
 - Frame
 - Time Alignment Error
 - Data Allocation Map
- Auto Measure:
 - Conformance Test
 - Maintenance Test
 - Signal Performance Test
 - DAS Test

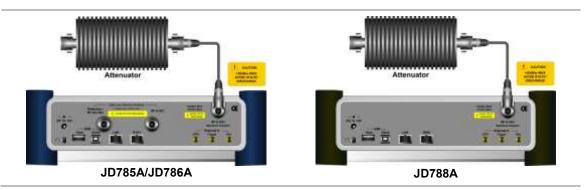

JD780A Series Analyzers

- Power Statistics CCDF
- Carrier Aggregation
- Over The Air (OTA)
 - Channel Scanner
 - ID Scanner
 - Multipath Profile
 - Control Channel
 - Datagram
 - Route Map
- RAN Performance Indicator

Display overview

Figure 99 provides descriptions for each segment of the measurement screen.

Figure 99 LTE - FDD signal analyzer measurement screen

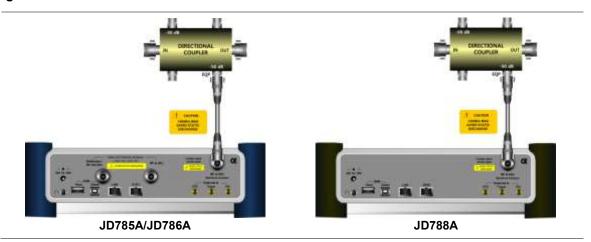

Connecting a cable

Direct connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the Power amplifier output port of BTS.

Figure 100 Direct connection

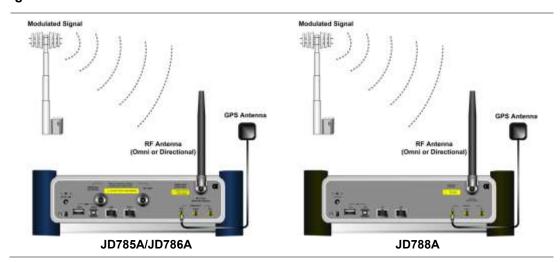


Indirect connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the monitor (test) port of BTS

Figure 101 Indirect connection


CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

- Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD780A series.
- 2. Connect a GPS antenna to the GPS port of the JD780A series.

Figure 102 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Press the Signal Analyzer soft key.
- 3. Press the LTE FDD soft key. The Spectrum mode is set by default.
- 4. Press the MEASURE hot key, and then select the measurement mode option from the following choices:
 - Spectrum
 - RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACLR, Multi-ACLR, or Spurious Emissions
 - Power vs Time (Frame)
 - Modulation Analysis > Constellation, Data Channel, Control Channel, Subframe, Frame, Time Alignement Error, or Data Allocation Map
 - Auto Measure > Conformance Test, Maintenance Test, Signal Perfomance, or DAS Test
 - Power Statistics CCDF
 - More (1/2) > Carrier Aggregation
 - More (1/2) > OTA > Channel Scanner, ID Scanner, Multipath Profile, Control Channel, Datagram, or Route Map
 - More (1/2) > RAN Performance Indicator
 - More (1/2) > NB-IoT Modulation Analysis

NOTE

The **Carrier Aggregation** soft key is activated if the license for the option 030 LTE-Advanced FDD is installed and so does the **RAN Performance Indicator** for the option 014 LTE-FDD RAN Performance Indicator.

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Center Frequency soft key.
- **4.** Enter a value by using the numeric keys. You can also use the rotary knob.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** *Optional.* To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a. Press the Frequency Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1. Press the FREQ/DIST hard key.
- Toggle the Unit soft key and select Channel.

Selecting **Channel** sets the standard channel to **Band Global** automatically so that you can set the **Channel Number** without choosing a standard channel band from the list.

- 3. Press the Channel Number soft key.
- 4. Enter a value by using the numeric keys. You can also use the rotary knob.
- 5. Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- **6.** Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a. Press the Channel Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the dBm soft key or the ENTER hard key.

In the measurements such as **Control Channel**, **Subframe**, and **Frame**, you can select the reference option between **Relative** and **Absolute** instead.

- **3.** To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - **b.** Press the **Attenuation Value** soft key to set the level.
 - **c.** Enter a value between 0 and 55 in fives by using the numeric keys.
 - d. Press the dB soft key or the ENTER hard key.
- To couple the input attenuator's level with your reference level setting, select **Attenuation** > **Couple**. As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

D	ro	~	'n		ro
_	rυ	CE	;u	u	re

To set the scale per division:

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- 3. Enter a value between 1 and 20 by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the Preamp soft key and select On or Off as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select On.
- 3. Enter a value by using the numeric keys.
- **4.** Press the **dB** soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.

- 3. Enter a value between 1 and 100 as needed by using the numeric keys.
- 4. Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

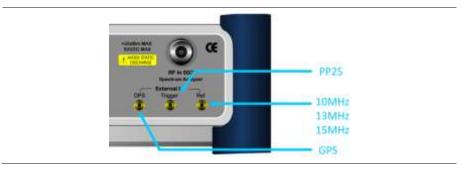
- 1. Press the SWEEP hot key.
- Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3. Optional. Press the **Sweep Once** soft key to get a new measurement.

To return to the continuous sweep mode:

 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.


Procedure

- 1. Press the TRIGGER hot key.
- 2. Select the trigger source option from the following choices: Internal, External, or GPS.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD780A series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

Figure 103 Connection ports for external reference clock

Procedure

- 1. Connect an external reference or a GPS antenna to the JD780A series.
- 2. Press the SYSTEM hot key.
- 3. Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

 Table 13
 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the Bandwidth soft key.
- **3.** Select the nominal channel bandwidth to be measured, from the following choices:
 - 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz

Your measurement result is displayed on the screen as like the following example, Figure 104.

| Mode | State | Section |

Figure 104 Spectrum measurement screen with LTE - FDD signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6.
 The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3. Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or the rotary knob.

- **4.** Optional. Press the **More (1/2) > Trace Info** soft key, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or **None** to hide the information display.
- 5. Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.


The channel power measurement identifies the total RF power and power spectral density (PSD) of the signal in the LTE channel bandwidth.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement.

- 1. Press the MEASURE SETUP hot key.
- 2. Press the Bandwidth soft key.
- 3. Select the nominal channel bandwidth to be measured, from the following choices:
 - 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz

Figure 105 Channel power measurement with LTE - FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 230 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement.

- 1. Press the MEASURE SETUP hot key.
- 2. Press the Bandwidth soft key.
- 3. Select the nominal channel bandwidth to be measured, from the following choices:
 - 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz

Figure 106 Occupied bandwidth measurement with LTE - FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 230 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates them to the carrier power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement.

- 1. Press the *MEASURE SETUP* hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the mask type, complete the following steps:
 - a. Press the Mask Type soft key.

- **b.** Select the mask type option, from the following choices:
 - Wide Area BS Category A
 - Wide Area BS Category B
 - Local Area BS
 - Home BS

Figure 107 SEM measurement with LTE - FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 230 for more information.

ACLR

The Adjacent Channel Leakage power Ratio (ACLR) measures the amount of interference or power in an adjacent frequency channel according to the standards.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement.

- 1. Press the MEASURE SETUP hot key.
- 2. Press the Bandwidth soft key.
- 3. Select the nominal channel bandwidth to be measured, from the following choices:
 - 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz

Figure 108 ACLR measurement with LTE - FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 230 for more information.

Multi-ACLR

The Multi-ACLR measurement is used to perform multi-channel ACLR measurements with as many channels as possible. It helps you to measure ACLR in multi-channel transmitting Base Station environment.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To set the frequency, do one of the following:
 - To set the center frequency, complete the following steps:
 - a. Toggle the **Unit** soft key and select **Freq**.
 - **b.** Press the **Lowest Frequency** soft key to set the starting center frequency.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Select the unit: GHz, MHz, kHz, or Hz.
 - e. Press the **Highest Frequency** soft key to set the stopping center frequency.

- **f.** Enter a value by using the numeric keys. You can also use the rotary knob.
- g. Select the unit: GHz, MHz, kHz, or Hz.
- To set the channel number, complete the following steps:
 - a. Toggle the Unit soft key and select Channel.

Selecting **Channel** sets the standard channel to **Band Global** automatically so that you can set the **Channel Number** without choosing a standard channel band from the list.

- b. Press the Lowest Channel soft key to set the starting channel.
- **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
- d. Press the Enter soft key.
- e. Press the **Highest Channel** soft key to set the stopping channel.
- f. Enter a value by using the numeric keys. You can also use the rotary knob.
- g. Press the Enter soft key.

Measurement example

Figure 109 Multi-ACLR measurement with LTE - FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 230 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set up the range table and parameters, press the Range Table soft key and then complete the following steps:
 - a. Press the Range soft key, and then select the range number between 1 and 20 to add as a new or change the existing settings.
 - b. Do the following as desired:
 - Select Start Frequency, and then specify the start frequency for the selected range.
 - Select **Stop Frequency**, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.
 - c. Press the PREV hard key.
 - d. Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3. Toggle the Measure Type soft key between Examine and Full to select the measurement type.

NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 4. To set the number of measurements to be averaged, complete the following steps:
 - a. Press the Average soft key.
 - b. Enter a value between 1 and 100.
 - c. Press the Enter soft key.
- 5. To move the highlighted bar in the result table to other range, complete the following steps:
 - a. Press the Range soft key in the Measure Setup menu bar.
 - b. Enter a value between 1 and 20.
 - c. Press the Enter soft key.

Figure 110 Spurious emissions measurement with LTE - FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 230 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACLR	ACLR	(On/Off only)
Multi-ACLR	Multi-ACLR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- 4. Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Conducting power vs. time (frame) measurements

The Power vs. Time (Frame) measures the modulation envelope in the time domain, showing the power of each time slot in an LTE signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 4. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.

Figure 111 Power vs. time (frame) measurement with LTE – FDD signal analyzer

Conducting modulation measurements

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c. Press the Enter soft key.
- 4. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:

- Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
- Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. Toggle the CFI soft key and select Auto or Manual as desired:
 - Auto: to let the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.
 - Manual: to set the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by 0, 2, 3 or 4 in 1.4 MHz bandwidth and 1, 2, or 3 in other bandwidths.
- **6.** Optional. Press the **PHICH Ng** soft key, and then select the option for the number of PHICH groups (Ng): **1/6**, **1/2**, **1**, **2**, **E-1/6**, **E-1/2**, **E-1**, or **E-2**.
- 7. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
 - Press the PDSCH Modulation Type soft key, and then select the modulation type option: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1. If two or more modulation types are used in a frame, select Auto. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

If you have installed a license for the option **032 LTE-FDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

- To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- Toggle the PDSCH Precoding soft key between On and Off to enable or disable the PDSCH precoding.

Figure 112 Constellation measurement with LTE - FDD signal analyzer

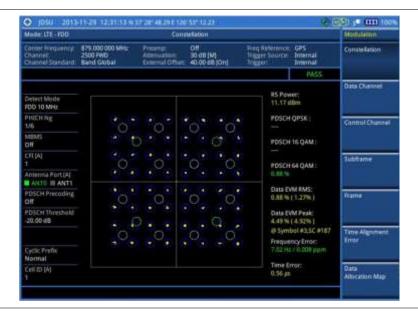


Figure 113 Constellation measurement with LTE - FDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 251 for more information.

Data channel

The Data Channel measures the constellation for the specified resource block as well as the modulation accuracy of each PDSCH at the specified subframe.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you

can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft kev.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c. Press the Enter soft key.
- 4. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- **5.** Optional. Toggle the **CFI** soft key and select **Auto** or **Manual** as desired:
 - Auto: to let the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.
 - Manual: to set the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by 0, 2, 3 or 4 in 1.4 MHz bandwidth and 1, 2, or 3 in other bandwidths.
- **6.** Optional. Press the **PHICH Ng** soft key, and then select the option for the number of PHICH groups (Ng): **1/6**, **1/2**, **1**, **2**, **E-1/6**, **E-1/2**, **E-1**, or **E-2**.
- 7. Toggle the Event Hold soft key between On and Off to enable or disable the event hold feature. When enabled, the display line for the PDSCH threshold appears. When an event occurs, the measurement is put on hold until you press the HOLD hot key.
- 8. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter

details by different bandwidth.

 Press the PDSCH Modulation Type soft key, and then select the modulation type option: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1. If two or more modulation types are used in a frame, select Auto. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

NOTE

If you have installed a license for the option **032 LTE-FDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

- To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - a. Enter a value by using the numeric keys, and then press the dB soft key.
- Toggle the PDSCH Precoding soft key between On and Off to enable or disable the PDSCH precoding.

Setting display

You can use the TRACE/DISPLAY hard key to change the display mode to NB-IoT.

Procedure

- 1. Press the MARKER hard key.
- Toggle the NB-IoT soft key between On and Off to display or dismiss the result of the selected resource block. If this setting is on, the MARKER hard key is activated.
- To adjust the NB-IoT PBR Index, press the NB-IoT PBR Index soft key, and then turn the rotary knob clockwise or counter clockwise.

Measurement example

Figure 114 Data channel measurement with LTE - FDD signal analyzer

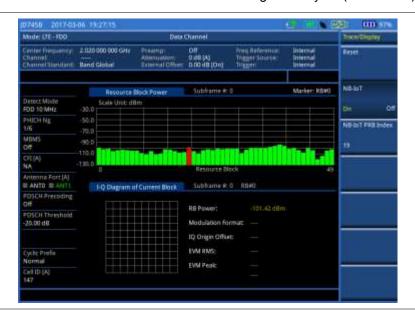


Figure 115 Data channel measurement with LTE - FDD signal analyzer (MBMS On)

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 251 for more information.

Figure 116 Data channel measurement with LTE - FDD signal analyzer (NB-IoT On)

NOTE

You can see the resource block displayed in red, and if the value of Marker and NB-IoT PRB Index are same, only RB Power is displayed.

Using marker

You can use the **MARKER** hard key to place a marker on a resource block and display the IQ diagram for the selected resource block.

Procedure

- 1. Press the MARKER hard key.
- 2. Press the RB Number soft key to select the resource block to be marked.
- 3. Enter the resource block number by using the numeric keys.
- Press the Enter soft key.
 The marker appears on the selected resource block.
- Toggle the Marker View soft key between On and Off to display or dismiss the result of the selected resource block.

Control channel

The Control Channel measures the constellation for the specified control channel as well as modulation accuracy of the control channel at the specified subframe.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c. Press the Enter soft key.
- 4. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. Toggle the CFI soft key and select Auto or Manual as desired:
 - Auto: to let the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.
 - Manual: to set the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by 0, 2, 3 or 4 in 1.4 MHz bandwidth and 1, 2, or 3 in other bandwidths.
- Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 7. Toggle the EVM Detection Mode soft key and select Single or Combine as desired:

- Single: Testing on one single antenna connected to your JD780A series with a cable.
- Combine: Testing on multiple antennas connected to your JD780A series with a 2x1 or 4x1 combiner or an antenna.
- 8. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
 - To set the threshold for PDCCH, complete the following steps:
 - a. Press the PDCCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
 - Toggle the PDCCH Mode soft key and select REG to calculate EVM based on Resource Element Group or Avg to calculate EVM after adding up all the PDCCH signals from one subframe.

Figure 117 Control channel measurement with LTE - FDD signal analyzer

Figure 118 Control channel measurement with LTE - FDD signal analyzer (MBMS On)

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 251 for more information.

Using marker

You can use the **MARKER** hard key to place a marker on a control channel and display the IQ diagram for the selected channel.

Procedure

- 1. Press the MARKER hard key.
- 2. Press the **Channel** soft key to select the channel to be displayed in the IQ diagram. The channel P-SS is selected by default.
- 3. Turn the rotary knob to move the highlight from one to another in the channel summary table.
- Toggle the Marker View soft key between On and Off to display or dismiss the result of the selected channel.

Subframe

The Subframe measures the modulation accuracy of all the data and control channels at the specified subframe (1 ms).

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

1. Press the **MEASURE SETUP** hot key.

- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c. Press the Enter soft key.
- 4. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. Toggle the CFI soft key and select Auto or Manual as desired:
 - Auto: to let the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.
 - Manual: to set the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by 0, 2, 3 or 4 in 1.4 MHz bandwidth and 1, 2, or 3 in other bandwidths.
- Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 7. Toggle the EVM Detection Mode soft key and select Single or Combine as desired:
 - **Single:** Testing on one single antenna connected to your JD780A series with a cable.
 - Combine: Testing on multiple antennas connected to your JD780A series with a 2x1 or 4x1 combiner or an antenna.
- 8. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table and either PMCH or PDSCH appears as well depending on the detected channel.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
 - Press the PDSCH Modulation Type soft key, and then select the modulation type option:

Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1. If two or more modulation types are used in a frame, select Auto. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

D

NOTE

If you have installed a license for the option **032 LTE-FDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

- To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- To set the threshold for PDCCH, complete the following steps:
 - a. Press the PDCCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- Toggle the PDCCH Mode soft key and select REG to calculate EVM based on Resource Element Group or Avg to calculate EVM after adding up all the PDCCH signals from one subframe.
- Toggle the PDSCH Precoding soft key between On and Off to enable or disable the PDSCH precoding.

Figure 119 Subframe measurement with LTE - FDD signal analyzer

1) Regular view

2) Chart view

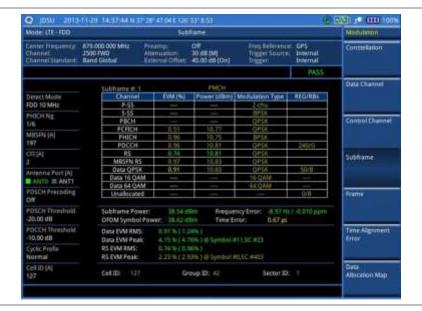



Figure 120 Subframe measurement with LTE - FDD signal analyzer (MBMS On)

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 251 for more information.

Setting display

You can use the TRACE/DISPLAY hard key to view the RE and RS power at the symbol.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- **2.** Toggle the **Chart** soft key between **On** and **Off** to display or dismiss the chart. If this setting is on, the **MARKER** hard key is activated.

Using marker

If you turn the Chart view on, you can use the **MARKER** hard key to place the marker at a specific symbol.

Procedure

- 1. Press the MARKER hard key.
- Toggle the Marker View soft key between On and Off to display or dismiss the marker on the chart.
- 3. Press the **Symbol** soft key to select the symbol number, to which the marker is placed.
- **4.** Enter a value by using the numeric keys.
- 5. Press the Enter soft key.

Frame

The Frame measures the modulation accuracy of all the data and control channels at the frame (10 ms).

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- **4.** Optional. Toggle the **CFI** soft key and select **Auto** or **Manual** as desired:
 - Auto: to let the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.
 - Manual: to set the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by 0, 2, 3 or 4 in 1.4 MHz bandwidth and 1, 2, or 3 in other bandwidths.
- 5. Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 6. Toggle the EVM Detection Mode soft key and select Single or Combine as desired:
 - Single: Testing on one single antenna connected to your JD780A series with a cable.
 - Combine: Testing on multiple antennas connected to your JD780A series with a 2x1 or 4x1 combiner or an antenna.
- 7. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the Antenna Port soft key and select the option: Auto, 0, 1, 2, and 3. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. If this setting is on, the measurement items MBSFN RS, PMCH QPSK, PMCH 16 QAM, and PMCH 64 QAM appear in the result table.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
 - Press the PDSCH Modulation Type soft key, and then select the modulation type option: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1. If two or more modulation types are used in a frame, select Auto. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

If you have installed a license for the option **032 LTE-FDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

- To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- To set the threshold for PDCCH, complete the following steps:
 - a. Press the PDCCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- Toggle the PDCCH Mode soft key and select REG to calculate EVM based on Resource Element Group or Avg to calculate EVM after adding up all the PDCCH signals from one subframe.
- Toggle the PDSCH Precoding soft key between On and Off to enable or disable the PDSCH precoding.

Measurement example

Figure 121 Frame measurement with LTE - FDD signal analyzer

Figure 122 Frame measurement with LTE - FDD signal analyzer (MBMS On)

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 251 for more information.

Time alignment error

In eNode B supporting Tx Diversity transmission, signals are transmitted from two or more antennas. These signals shall be aligned. The time alignment error in Tx diversity is specified as the delay between the signals from two antennas at the antenna ports.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 4. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

- To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.

Figure 123 Time alignment error measurement with LTE - FDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 251 for more information.

Data allocation map

The Data Allocation Map function represents data allocation as a frame.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. To select the subframe number to be measured, complete the following steps:

- a. Press the Subframe No soft key.
- **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c. Press the Enter soft key.
- 4. To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- 5. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- **6.** Optional. Press the **Miscellaneous** soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.

Setting display

You can use the **TRACE/DISPLAY** hard key to change the display mode to Display Channel and NB-IoT

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Display Channel soft key.
- 3. Select the display mode from the choice: PDSCH, PMCH, and Both.
- Toggle the NB-IoT soft key between On and Off to display or dismiss the result of the selected resource block. If this setting is on, the MARKER hard key is activated.
- To adjust the NB-IoT PBR Index, press the NB-IoT PBR Index soft key, and then turn the rotary knob clockwise or counter clockwise.

Figure 124 Data allocation map measurement with LTE - FDD signal analyzer

Figure 125 Data allocation map measurement with LTE - FDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 251 for more information.

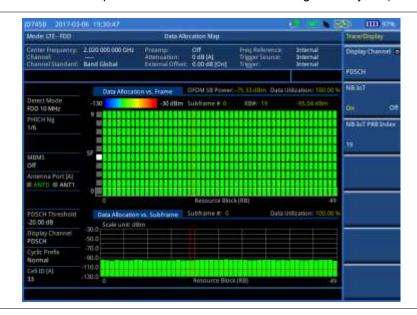


Figure 126 Data allocation map measurement with LTE - FDD signal analyzer (NB-IoT On)

Using marker

You can use the MARKER hard key to place the marker at a specific resource block and subframe.

Procedure

- 1. Press the MARKER hard key.
- Toggle the Marker View soft key between On and Off to display or dismiss the marker on the chart.
- 3. To select the resource block number, complete the following steps:
 - a. Press the RB Number soft key.
 - **b.** Enter the resource block number to select by using the numeric keys. You can also use the rotary knob to move the marker side by side.
 - c. Press the Enter soft key.
- **4.** To select the subframe block number, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter the subframe number to select by using the numeric keys. You can also use the rotary knob to move the marker up and down.
 - c. Press the Enter soft key.

Setting limit for modulation tests

- 1. Press the LIMIT hot key.
- 2. Press the Modulation Test Limits soft key to set the limits.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set

Frequency error	Frequency Error	High Limit Low Limit
PDSCH error vector magnitude if MBMS is off	EVM > PDSCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM) High Limit (256 QAM)*
PMCH error vector magnitude if MBMS is on and a PMCH is detected	EVM > PMCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM) High Limit (256 QAM)*
RMS for data error vector magnitude	EVM > Data EVM RMS	High Limit
Peak for data error vector magnitude	EVM> Data EVM Peak	High Limit
RS error vector magnitude	EVM > RS EVM	High Limit
P-SS error vector magnitude	EVM > P-SS EVM	High Limit
S-SS error vector magnitude	EVM > S-SS EVM	High Limit
Downlink RS power	Power > DL RS Power	High Limit Low Limit
P-SS power	Power > P-SS Power	High Limit Low Limit
S-SS power	Power > S-SS Power	High Limit Low Limit
PBCH power	Power > PBCH Power	High Limit Low Limit
Subframe power	Power > Subframe Power	High Limit Low Limit
OFDM symbol power	Power > OFDM Symbol Power	High Limit Low Limit
Frame average power	Power > Frame Avg Power	High Limit Low Limit
Time alignment error for MIMO	Time Alignment Error > MIMO	High Limit
Time alignment error for aggregation of component carriers (intra-band contiguous, intra-band non-contiguous, and inter-band)	Time Alignment Error > Carrier Aggregation	Intra Cont Intra Non-cont Inter Band
Time error	Time Error	High Limit Low Limit
I-Q origin offset	IQ Origin Offset	High Limit

^{4.} Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.

^{5.} Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Performing auto measurements

Conformance test

The Conformance Test is to test if eNode-B meets some specified standards that have been developed for verification. Its test procedure and test setups have been developed by 3GPP. Test results can be saved as a .csv file type.

Setting limit for conformance test

You can set test limits for test item(s) in the auto measurement. Turning the test limit on for a test item makes the test item included in the conformance test.

Procedure

- 1. Press the LIMIT hot key.
- 2. To set the limit for BTS output power, complete the following steps:
 - a. Press the BTS Output Power soft key.
 - b. Toggle the Test Limits soft key between On and Off to enable or disable the limit.
 - c. Press the High Limit soft key.
 - d. Enter a value for the upper limit.
 - e. Press the dBm unit soft key.
 - f. Press the Low Limit soft key.
 - g. Enter a value for the lower limit.
 - h. Press the dBm unit soft key.
- 3. To set the limit for total power dynamic, complete the following steps:
 - a. Press the Total Power Dynamic soft key.
 - **b.** Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the limit.
 - c. Press the Low Limit soft key.
 - d. Enter a value for the lower limit.
 - e. Press the dBm unit soft key.
- **4**. To verify signal quality, press the **Signal Quality** soft key, and then do the following as needed:

To set the limit for	Select	Set
Frequency error	Frequency Error > Test Limits [E-TM2 E-TM3.1 E-TM3.2 E- TM3.3]	High Limit Low Limit
Error vector magnitude	EVM > Test Limits [E-TM2 E- TM3.1 E-TM3.2 E-TM3.3]	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM)
Time alignment error	Time Alignment Error	High Limit
RS power	RS Power	High Limit Low Limit

5. To verify unwanted emissions, press the Unwanted Emissions soft key, and then do the following as needed:

To set the limit for	Select	Set	

Occupied bandwidth	Occupied BW	High Limit
Adjacent channel power ratio	ACLR	
Spectrum emission mask	SEM	Mask Type
Spurious emissions	Spurious Emissions	Range Table

- **6.** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Setting measure setup

After setting frequency as described in the "Configuring test parameters" on page 216, you can continue your measurement.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the Bandwidth soft key.
- 3. Select the nominal channel bandwidth to be measured, from the following choices:
 - 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz
- 4. Press the Sector soft key, and then select the sector option: Alpha, Beta, or Gamma.
- **5.** To set external offset, complete the following steps:
 - a. Toggle the External Offset soft key and select On.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- **6.** To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 33 for more information.
- Press the Run Test soft key to start to run a test.
 The Auto Measure Results window appears at the end of the test.
- **8.** When prompted on the screen, connect the cable from the **Spectrum Analyzer RF In** port of the instrument either to **Antenna Port 0** or **Antenna Port 1** of the eNode-B, and then change the TM mode on the eNode-B side.
- 9. Press the Continue soft key to continue testing.
- **10.** Repeat the steps 8-9 until completion of the test. A conformance test report appears at the end of the test.
- **11.** *Optional.* To stop running the test, press the **Abort** soft key.

Maintenance test

The Auto Measure function of the JD780A series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 20 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

Following settings are required only when you run the Auto Measure Maintenance Test on the instrument using "Current" configuration setting. Additional settings are not required when you run Auto Measure using a scenario generated in the PC application software, JDViewer.

Setting limit for maintenance test

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1. Press the *LIMIT* hot key.
- 2. Press the RF Test Limits soft key, and then enable test limits as desired.
- 3. Press the Modulation Test Limits soft key, and then enable test limits as desired.
- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

You can use the **Allowed % Change** soft key for each test item to compare two measurement values displayed in the result table. This requires setting the **Display** mode to **Compare** in advance.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Toggle the Configuration soft key and select the configuration option:
 - Current: to let the instrumnet use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.
 - Scenario: to run a test with a programmed scenario in JDViewer.
 The Scenario menu becomes activated.
- 3. To load a scenario, press the Scenario soft key, and then select a scenario file to load.
- **4.** Toggle the **Test Time** soft key and select the test time option:
 - Now: to let the instrument run a test only once.
 - Schedule: to let the instrument repeat tests as defined in the Set Timing.
 The Set Timing menu becomes activated.
- **5.** To define a schedule for an auto measurement, complete the following steps:
 - a. Press the Set Timing soft key.
 - b. Press the Start Time (HH:MM) soft key.
 - **c.** Enter the time in the HH:MM format, and then press the **Enter** soft key.
 - d. Press the Stop Time (HH:MM) soft key.
 - **e.** Enter the time in the HH:MM format, and then press the **Enter** soft key.
 - f. Press the Time Interval soft key.
 - g. Enter the amount of time in minutes, and then press the Enter soft key.

_

- 6. Press the Settings soft key, and then set the following as needed:
 - **a.** Press the **Bandwidth** soft key, and then select the nominal channel bandwidth to be measured, from the following choices:
 - 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz
 - b. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
 - c. Press the MIMO soft key, and then select the antenna number option: 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - **d.** Press the **Antenna Port** soft key, and then select the option: **Auto**, **0**, **1**, **2**, or **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - e. Toggle the External Offset soft key and select On.
 - f. Enter a value by using the numeric keys, and then press the dB soft key.
 - g. To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number.
 - h. To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- 7. To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you

desire. See "Using save" on page 33 for more information.

- Press the Run Test soft key to start to run a test.
 The Auto Measure Results window appears at the end of the test.
- 9. To stop running the test, press the Abort soft key.
- 10. To change the view on the screen during the test, press the **Display** and then select the view option from the following choices:
 - Screen: You can view each measurement screen as the test progresses.
 - Results: You can view a measurement result table as the test progresses.
 - Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

- 1. Toggle the **Display** soft key and select the display option:
 - Result: to view the result table.
 The Display Result menu becomes activated.
 - Settings: to view the measurement settings for the auto measurement.
- **2.** Toggle the **Display Result** soft key and select the display result option:
 - Full: to view detailed measurement readings with the pass/fail indication.
 - Quick: to view only the Pass/Fail results.
 - Compare: to compare two measurement values for each test time with the Allowed %
 Change setting on. You can view results vs. factory-defined or user-defined references.
- **3.** To view the measurement results for a different carrier, press the **View Carrier** soft key and then select the carrier number to view.
- Press the Replace Reference soft key to replace existing reference values for comparison with new measurement data.
- 5. Press the Load From soft key to select the location from which references file to be loaded.

Signal performance test

Unlike the other auto measurement tests, the Signal Performance Test runs measurements continuously.

Setting limit for signal performance test

You can set test limits for test item(s) in the auto measurement.

- 1. Press the LIMIT hot key.
- 2. Press the **RF Test Limits > Channel Power** soft key, and then set the limits for the channel power. Other RF test items are not used in the signal performance test.
- 3. Press the **Modulation Test Limits** soft key, and then enable test limits as desired.
- 4. Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.

Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.

Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings.
 See "Using save" on page 33 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 3. Press the **MIMO** soft key, and then select the antenna number option: **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
- **4.** Press the **Antenna Port** soft key, and then select the option: **Auto**, **0**, **1**, **2**, or **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
- 5. Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured, from the following choices:
 - 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz
- **6.** Toggle the **RF Profile** soft key between **On** and **Off** to turn on or off the RF profiling such as channel power and subframe frequency error.
- 7. Toggle the **Modulation Profile** soft key between **On** and **Off** to turn on or off the modulation profiling such as P-SS, S-SS, Data QPSK, Data 16 QAM, and Data 64 QAM.
- 8. Toggle the MIMO Profile soft key between On and Off to turn on or off the MIMO profiling such as TX1 RS0, TX2 RS1, and time alignment error.
- 9. Toggle the External Offset soft key and select On to set the external offset value.
- 10. To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 33 for more information.

DAS test

The Distributed Antenna System (DAS) testing enables you to check the degradation of performance in the signal transmission from a radio band to antennas distributed from it. You can save measurement values at both the radio band and antennas and then compare results with percentage of changes. You can also save test results in the .csv file format for ease of analysis.

Setting measure setup

Procedure

1. Press the **MEASURE SETUP** hot key.

- Press the Settings soft key and then set the following;
 - a. Press the Bandwidth soft key and then select the nominal channel bandwidth to be measured from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz:
 - b. Press the MIMO soft key, and then select the antenna number option: 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - c. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
 - **d.** Press the **Antenna Port** soft key, and then select the option: **Auto**, **0**, **1**, **2**, or **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - e. Toggle the External Offset soft key and select On to set the external offset value.
 - f. To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off.
 - g. To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- 3. To save your settings, go to SAVE/LOAD > Save > Save Setup and then perform functions as you desire. See "Using save" on page 33 for more information.
- Press the Continue soft key to do the reference test first or press the Skip Reference Test soft key if you already saved test results from the radio band under test.
- Press the FREQ/DIST hard key and then set the frequency to be measured. See "Setting frequency" on page 289 for more information.
- 6. Press the PREV hard key.
- 7. Press the **Limit** soft key and then set the limits and allowed percentage change for each test item. See "Maintenance test" on page 327 for more information on setting limits.
- 8. Keep pressing the PREV hard key until you see the Run Test soft key.
- **9.** Press the **Run Test** soft key. The instrument runs specified tests to gather reference measurement values. The measurement table appears when the reference test is done.
- 10. Press the Continue soft key to run the testing on an antenna (Ant 1).
- **11.** Optional. To change the settings such as **External Offset**, press the **Settings** and then change the settings as needed.
- 12. Press the Continue soft key.
 - The instrument runs the testing on Ant 1. The Ant 1 tab appears with the updated result table when the test is done.
- **13.** To run the testing on the next antenna (Ant 2), press the **Run Test** soft key and then repeat the steps **11-12**. You can do the testing on up to 10 distributed antennas for one radio band.
- 14. To view test results for each antenna, press the Select Antenna soft key and then select the antenna tab number to display on the screen.
- 15. Optional. Press the **Delete** Test soft key to delete the selected antenna tab.
- 16. Optional. Press the Retest Reference soft key to obtain reference measurement values again.
- 17. Optional. To save your measurement results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 33 for more information.

Measurement Example

Figure 127 DAS measurement with LTE - FDD signal analyzer

Performing power statistics CCDF measurements

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the CCDF Length soft key to set the length of the CCDF.
- 3. Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4. Press the Enter soft key.

Measurement example

Figure 128 CCDF measurement with LTE - FDD signal analyzer

Performing carrier aggregation measurements

Carrier aggregation enables a maximum of five multiple LTE carriers to be used together in order to provide high data rate required for LTE-Advanced. Component carriers to be aggregated can be intraband contiguous, intra-band non-contiguous, or inter-band. The JD780A series provides carrier aggregation measurements supporting for all the different modes with carrier aggregation bands added to the channel standard. This functionality is activated if the license for the option 030 LTE-Advanced FDD is installed.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. To configure parameters for up to 5 component carriers, complete the following steps:
 - **a.** Press the **CA Configuration** soft key. The component carrier configuration window appears.
 - b. Press the CA Range soft key.
 - c. Enter the number of the component carrier to be set between 1 and 5.
 - d. Press the Enter soft key.
 - **e.** Toggle the **Turn On** soft key and then select **On** to set parameters and view the results for the selected component carrier on the screen or **Off** to turn it off.
 - f. Set the following parameters as needed:
 - Center Frequency, Channel, Bandwidth, Cell ID, CFI, PHICH Ng, Antenna Port,

MBMS On/Off, Cyclic Prefix, and PDSCH Modulation Type

- g. To set more component carriers, repeat the steps c-f.
- 3. Press the MEASURE SETUP hot key again
- 4. Toggle the EVM Detection Mode soft key and select Single or Combine as desired:
 - Single: Testing on one single antenna connected to your JD780A series with a cable.
 - Combine: Testing on multiple antennas connected to your JD780A series with a 2x1 or 4x1 combiner or an antenna.
- 5. To select the subframe number to be measured, do one of the following:
 - If the EVM Detection Mode is set to Single, press the Subframe No soft key and then set the subframe number.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- If the EVM Detection Mode is set to Combine, toggle the Subframe No soft key and then select 0 or 5.
- **6.** To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- Toggle the PDSCH Precoding soft key between On and Off to enable or disable the PDSCH precoding.
- 8. To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

Setting display

You can use the TRACE/DISPLAY hard key to select modulation analysis or spectrum analysis.

- 1. Press the TRACE/DISPLAY hard key.
- Toggle the Display soft key and select MA for modulation analysis or SA for spectrum analysis. The screen changes according to the selected option.

Measurement example

Figure 129 Carrier aggregation measurement with LTE - FDD signal analyzer (MA)

Figure 130 Carrier aggregation measurement with LTE - FDD signal analyzer (SA)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 251 for more information.

Using marker

You can use the **MARKER** hard key to place the marker at a specific channel.

Procedure

1. Press the MARKER hard key.

- Toggle the IQ Diagram soft key between On and Off to display or dismiss data on the IQ diagram for each component carrier.
- 3. Press the Channel soft key to select the channel to be displayed on the IQ diagram.
- 4. Use the rotary knob to move and select an item under EVM.

Conducting LTE - FDD OTA measurements

The FDD LTE Over The Air (OTA) measurement has Channel Scanner, ID Scanner, Multipath Profile, Datagram, and Control Channel screens. The ID Scanner displays key parameters such as RSRP, RSRQ, RS-SINR, and S-SS RSSI. The Multipath Profile enables you to determine RF environmental conditions of testing area. The OTA Control Channel provides summary of all control channels including RS power variation over time.

Channel scanner

The Channel Scanner is a radio receiver that can automatically tune or scan two or more discrete frequencies and multi-channels, indicating when it finds a signal on one of them and then continuing scanning when that frequency goes silent.

Setting channel/frequency

Procedure

To set the channels to be scanned:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- 3. Press the **Index** soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4.** To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c. Press the **Select** soft key or the rotary knob to confirm the selection.
- **5.** To set the channel number for the selected index, complete the following steps:
 - a. Press the Channel Number soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

The instrument displays a corresponding center frequency for the channel number.

- **6.** To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 7. To add more channels to be scanned, repeat steps 3-6.
- 8. Press the ESC hard key to dismiss the channel list window and view the scanning result.

To set the frequencies to be scanned:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the **Index** soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4.** To set the center frequency for the selected index, complete the following steps:
 - a. Press the Center Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **5.** To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** To add more channels to be scanned, repeat steps **3-5**.
- 7. Press the ESC hard key to dismiss the channel list window and view the scanning result.

Setting number of antenna ports

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Toggle the MIMO soft key and select 2x2 or 4x4.

 This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

Measurement example

Figure 131 Channel scanner measurement with LTE - FDD OTA signal analyzer

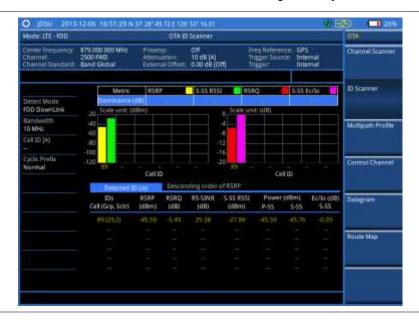
ID scanner

The LTE mobile receives signals from multiple base stations that all of these signals share the same spectrum and are present at the same time. Each base station has unique scrambling code assigned to the particular base station and it differentiates its signal from other base stations in the area.

The ID Scanner shows key parameters such as RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality) that predict the downlink coverage quickly.

- RSRPs from entire cells help to rank between the different cells as input for handover and cell reselection decisions.
- RSRQ provides additional information when RSRP is not sufficient to make a reliable handover or cell reselection decision.

All of the parameters for OTA ID scanner can be plotted on map data such as Google Maps and Google Earth by using JDViewer.


Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
- **4.** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 132 ID scanner measurement with LTE - FDD OTA signal analyzer

Multipath profile

The Multipath Profile enables you to determine RF environmental conditions of testing area. It indicates the amount of power of the dominant pilot signal that is dispersed outside the main correlation peak due to multipath echoes that are expressed in dB. This value should be very small ideally.

The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- Toggle the Display soft key and select RS or Sync.
 The RS Window soft key becomes activated if RS is selected.
- 4. Press the **RS Window** soft key, if RS is selected, and then select the RS window option: $2 \mu s$, $4 \mu s$, or $8 \mu s$.
- 5. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4.
 This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to

- 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
- To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
- **6.** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 133 Multipath profile measurement with LTE - FDD OTA signal analyzer

Control channel

DL RS power is the resource element power of Downlink Reference Symbol. The absolute DL RS power is indicated on the BCH. The absolute accuracy is defined as the maximum deviation between the DL RS power indicated on the BCH and the DL RS power at the BS antenna connector.

The OTA Control Channel provides summary of all control channels including RS power trend over time. GPS coordinates (latitude and longitude) will be displayed on the screen if a GPS antenna is connected and locked to the GPS satellites.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.

- b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c. Press the Enter soft key.
- 4. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 030 LTE-Advanced FDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- **6.** Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Setting limit for OTA control channel

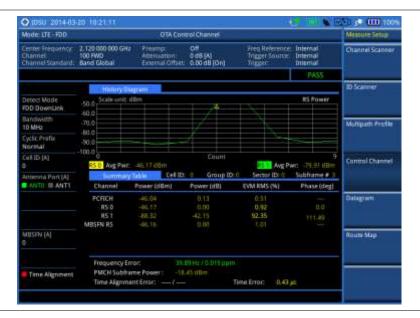
- 1. Press the *LIMIT* hot key.
- 2. Select the test item(s) and set the limit(s) as needed:

To set the limit for	Select	Set
P-SS error vector magnitude	P-SS EVM	High Limit
S-SS error vector magnitude	S-SS EVM	High Limit
RS error vector magnitude	RS EVM > RS0 EVM RS EVM > RS1 EVM RS EVM > RS2 EVM RS EVM > RS3 EVM	High Limit

Frequency error	Frequency Error	High Limit Low Limit
Time error	Time Error	High Limit Low Limit
Time alignment error	Time Alignment Error	High Limit

Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings.
 See "Using save" on page 33 for more information.

Setting display


You can use the TRACE/DISPLAY hard key to select the display option.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- **2.** Toggle the **Display** soft key and select **Power** or **EVM**. The screen changes according to the selected option.

Measurement example

Figure 134 Control channel measurement with LTE - FDD OTA signal analyzer

Datagram

The OTA Datagram is a time-varying spectral representation that shows how the power of a signal varies with time. The power allocated to the specific resource block will be represented with an amplitude axis (in dBm) and the waterfall diagram will show the trend of past resource block power over certain period. Using a marker function facilitates analysis of accumulated resource block power for data utilization.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you

can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 4. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- **6.** To set the time cursor at a specific position, complete the following steps:
 - $\textbf{a.} \quad \text{Toggle the $\textbf{Time Cursor}$ soft key and select \textbf{On}.}$
 - **b.** Turn the rotary knob to move the time cursor. You can also enter a value and then press the **Enter** soft key.

NOTE

Enabling the time cursor puts the measurement on hold and you can make post-processing analysis for each measurement over time using the time cursor.

- 7. To start a new measurement, press the Reset/Restart soft key.
- 8. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 030 LTE-Advanced FDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
- Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available
 for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 135 Datagram measurement with LTE - FDD signal analyzer

Route map

The JD780A Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

If you have obtained user experience data through Viavi's ariesoGEO and generated raster data files from the application, you can load them onto your base map to help you troubleshoot problems easily and quickly.

Setting measure setup

Procedure

- If required, connect a GPS receiver to your JD780A series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2. Configure test parameters as described in the "Configuring test parameters" on page 216.
- 3. To load your map file, complete the following steps:
 - a. Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the Send to EQP menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- **b.** Press **SAVE/LOAD** hot key, and then select **Load > Load Map**. See "Using load" on page 36 for more information.
- Press the MEASURE SETUP hot key.
- 5. Press the Plot Point soft key, and then select the plot point option from the following choices:

To collect data/plot points automatically as you move around in a vehicle or outside, press
the GPS soft key and then toggle the Screen Mode soft key between Map and Full.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

- To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.
- **6.** Press the **Plot Item** soft key, and then select the measurement option: **RSRP**, **RSRQ**, **RS-SINR**, **S-SS RSSI**, **P-SS Power**, **S-SS Power**, or **S-SS Ec/lo**.

NOTE

The instrument collects the strongest Cell ID's data to plot points.

- Press the Bandwidth soft key to set the nominal channel bandwidth to be measured, and then select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 8. Toggle the Plot soft key and select Start to start plotting.
- **9.** Touch directly on the screen or press the **ENTER** hard key to collect data and plot points on the loaded map for the **Position** setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 10. Toggle the Plot soft key and select Stop to stop plotting.
- **11.** Press the **SAVE/LOAD** hot key to save the result. See "Using save" on page 33 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit for route map

You can set the thresholds for each test item.

- 1. Press the *LIMIT* hot key.
- 2. Select the plot items and set the limits as needed:

To set the limit for	Select	Set
RSRP	RSRP	Excellent, Very Good, Good, Fair, Poor (dBm)
RSRQ	RSRQ	Good, Fair, Poor (dB)
RS-SINR	RS-SINR	Good, Fair, Poor (dB)
S-SS RSSI	S-SS RSSI	Excellent, Very Good, Good, Fair, Poor (dBm)
P-SS Power	P-SS Power	Excellent, Very Good, Good, Fair, Poor (dBm)
S-SS Power	S-SS Power	Excellent, Very Good, Good, Fair, Poor (dBm)

S-SS Ec/lo S-SS Ec/lo Good, Fair, Poor (dB)

Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings.
 See "Using save" on page 33 for more information.

Measurement example

Figure 136 Route map measurement with LTE - FDD OTA signal analyzer

1) RSRP

2) RSRQ

3) RS-SINR

4) S-SS RSSI

5) P-SS Power

6) S-SS Power

7) S-SS Ec/lo

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the **Map Control** soft key. This key is active only when you have loaded a sizable map.
- 3. Do one of the following:
 - To zoom into an area of interest directly, complete the following steps:
 - **a.** Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
 - **b.** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.
 - c. Move the rectangle by using the four arrow keys, as you need, to place it in a specific

area of interest.

- **d.** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.
- To zoom into the center or zoom out from the center, complete the following steps:
 - a. Toggle the Zoom to soft key and select Center.
 - b. Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
 - c. Move the zoomed-in area by using the four arrow keys, as you need.

Loading and displaying raster data

If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your base map to help you check the signal quality and the strength of interferences while driving toward the area of interest.

Procedure

- 1. Copy a set of raster data files into your USB memory drive, including the following:
 - ASCII: .tab, .asc, and .clr files
 - BIL: .tab, .hdr, .bil, and .clr files

NOTE

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.

- 2. Plug in the USB memory drive to your instrument.
- 3. Press the TRACE/DISPLAY hard key.
- **4.** Press the **Load Raster Map** soft key. The file explorer window appears.
- 5. Navigate to the raster file (.tab) you want to open, and then press the **Load** soft key. The raster image appears on top of your base map as shown in **Figure 137**.

NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **6.** To select the display option, complete the following steps:
 - a. Press the Display Options soft key.
 - b. Select the option you desire from the choices: On, Off, and Blink.
- 7. To adjust the transparency level of the image, complete the following steps:
 - a. Press the Transparency soft key.
 - **b.** Enter a value between **0** for opaque and **100** for clear.
 - c. Press the Enter soft key.

Mode: LTE - FDD

Route Map

Center Frequency 2,020,000,000 GHz
Charmed
Charmed
Charmed Standard: Band Global

Feetman Offset: 0,000 dB (On)

Feetman Offset: 0,000 dB (On)

Trace/Duptry
Abertuarion: 0,48 (A)
Feetman Offset: 0,000 dB (On)

Trace/Duptry
Abertuarion: 0,48 (A)
Feetman Offset: 0,000 dB (On)

Trace/Duptry

Figure 137 Raster image overlaid on the route map in LTE-FDD OTA signal analyzer

Performing RAN performance testing

The JD780A series provides the optional feature that lets you conduct correlated uplink and downlink testing with your instrument connected to your mobile device via Bluetooth. The RANAdvisor TrueSite application installed on your smartphone collects data and transfers uplink data based on your parameter settings and then your instrument consolidates the data into the measurement results and displays them as performance indicators. It helps you troubleshoot a problem and identify the cause of the problem fast.

To perform this testing, you need both of these installed: the license for the option 014 LTE-FDD RAN Performance Indicator on your instrument and the RANAdvisor TrueSite app with the license on your smartphone.

Preparing your smartphone for remote control via Bluetooth

To set up a Bluetooth connection and enable data collection with remote control properly, you need to pair your instrument with your smartphone and set the app's local Bluetooth control option to Slave once at the beginning.

- Connect a Bluetooth adapter to the USB Host port and an Omni antenna to the RF In port of your CellAdvisor instrument.
 - The instrument detects the adapter and turns on its Bluetooth automatically.
- 2. Make your smartphone visible to your instrument by doing the following steps:
 - a. On your smartphone, turn on **Bluetooth**.
 - **b.** Check the checkbox for **Visible to all nearby Bluetooth devices** to enable this option.
- 3. Pair with your smartphone by doing the following steps:
 - a. On your instrument, press the MEASURE SETUP hot key.
 - b. Press the Bluetooth Connect soft key.
 - Press the Scan soft key.
 The instrument lists detected Bluetooth devices with their MAC address and status.

- **d.** Highlight your mobile device from the list by touching on the screen.
- e. Press the Pair soft key.

The pairing dialog box appears on your smartphone.

- f. On your smartphone, enter 0000 and then tap the OK button. If pairing is successful, the status of your device on the list changes to "Paired".
- 4. Make sure to set your smartphone as a slave by completing the following steps:
 - a. On your smartphone, open the **RANAdvisor TrueSite** icon.
 - b. Go to Settings > General.
 - c. Tap the Automation Control Mode menu under Automation Control Options.
 - d. Select the Local Bluetooth Control option.
 - e. Tap Slave.

The application restart dialog box appears.

f. Tap Continue.
The application closes itself.

NOTE

It is very important for you to set the local Bluetooth control option to **Slave** on the RANAdvisor TrueSite app in order to give your instrument a control to collect necessary data from the app over Bluetooth successfully.

Setting parameters on RANAdvisor TrueSite™

To specify uplink measurement data that will be transferred to your instrument, you need to set map display parameters of your choice on the RANAdvisor TrueSite application.

Procedure

- After you have paired and set your smartphone as a slave, open the RANAdvisor TrueSite
 icon on your device again.
- **2.** Tap the **(+)** button at the bottom of the Home screen. The Main Screen appears.
- **3.** Tap the **Customization** menu. The Choose Operation menu box appears.
- 4. Select Map Display Parameters > LTE Serving and Neighbor Parameters.
- **5.** Make sure to check the checkbox for the following two mandatory parameters:
 - Serving E-ARFCN
 - Serving Physical Cell-ID

NOTE

It is very important for you to select these two parameters to identify the Uplink Channel Number, Cell ID, Group ID, and Sector ID.

6. Select other parameters up to six from the list of parameters supported by the CellAdvisor instrument. See "Appendix L – Supported map display parameters" on page 649 for more information.

NOTE

As the RANAdvisor TrueSite app can transfer data of up to eight parameters at a time, it limits you to select eight parameters in total: two compulsories and six electives. After you have selected all eight parameters, the app blocks any further selection. In this case, you need to uncheck any selected optional parameters in order to enable other optional parameters.

7. Tap the **OK** button and then the **Back** key to return to the Home Screen.

Performing RAN performance testing

After you have set the local Bluetooth control option and selected desired parameters on the app, you need to connect your instrument to your smartphone via Bluetooth to enable data collection from

RANAdvisor TrueSite so that you can view consolidated measurement results on your instrument and save results as a file.

Procedure

- 1. Make sure to have the RANAdvisor TrueSite app opened on your device.
- 2. Press the MEASURE SETUP hot key on your instrument.
- 3. Press the Bluetooth Connect soft key.
- 4. Highlight your paired smartphone to connect from the list.
- Press the Connect soft key.
 The connected device information appears above the RAN Performance Indicator chart to indicate a successful connection.
- 6. The instrument automatically sets the correlated downlink channel number for the received uplink channel number and displays measurement results as like Figure 138. Observe the consolidated measurement results on the screen for your troubleshooting.

NOTE

If the Cell ID of the uplink channel is not identical to the one of the downlink channel, the instrument displays "---" for the parameters to indicate invalid measurement results.

- 7. If you want to see measurement results for other parameters, select new parameters on the RANAdvisor TrueSite app. See "Setting parameters on RANAdvisor TrueSiteTM" on page 279.
- Optional. To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 33 for more information.

Measurement example

Figure 138 RAN performance indicator in LTE-FDD signal analyzer

Setting performance score level

To analyze your measurement data easily with color codes, you can use the limit feature and set a performance score level for each measurement parameter.

Procedure

1. Press the LIMIT hot key.

2. To analyze the quality of user experience, do the following as needed:

To set the level for	Select	Set
Data throughput	Data Throughput	Good, Bad (kbps)
Channel quality indicator	CQI	Good, Bad
Modulation type	Modulation Type	(On/Off only)

3. To check the performance of eNodeB, do the following as needed:

To set the level for	Select	Set
Reference signal received power	RSRP	Good, Bad (dBm)
Reference signal received quality	RSRQ	Good, Bad (dB)
Signal to interference and noise ratio	SINR	Good, Bad (dB)
Error vector magnitude	More (1/2) > EVM	Good, Bad (%)
Time alignment error	More (1/2) > Time Alignment Error	Good, Bad (ns)
Frequency error	More (1/2) > Frequency Error	Good, Bad (ppm)

Performing NB-IoT modulation analysis

NB-IoT modulation enables a 4.5G solution to be deployed on the LTE network as an in-band mode. By implementing demodulation capability, the JD700B series provides the power and EVM of NB-IoT channel measurements and diplay the results on the screen within LTE-FDD Signal Analyzer. This functionality is activated if the license for the 034 NB-IoT Analyzer with an option 028 LTE- FDD Signal Analyer is installed. It is available on firmware version 3.066 and above but not on firmware version 3.070

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 216, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- ${\bf 3.}$ $\;$ To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - b. Enter a value by using the numeric keys. You can also use the rotary knob

NOTE

You can use **Subframe No** soft key only if you toggle the **Measure Type** soft key and select **Subframe**.

- c. Press the Enter soft key.
- Press the NB-IoT PRB Index soft key, and then turn the rotary knob clockwise or counter clockwise.

Measurement example

Figure 139 NB-IoT modulation measurement with LTE-FDD signal analyzer (Frame)

Figure 140 NB-IoT modulation measurement with LTE-FDD signal analyzer (Subframe 2)

Using marker

You can use the **MARKER** hard key to place a marker on a control channel and display the IQ diagram for the selected channel.

- 1. Press the MARKER hard key.
- 2. Press the **Channel** soft key to select the channel to be displayed in the IQ diagram. The channel P-SS is selected by default.
- 3. Turn the rotary knob to move the highlight from one to another in the channel summary table.
- **4.** Toggle the **Marker View** soft key between **On** and **Off** to display or hide the result of the selected channel.

Using LTE - TDD Signal Analyzer

This chapter provides instructions for using the LTE - TDD Signal Analyzer (option 029) and LTE-Advanced TDD Analyzer (option 031) with the LTE - TDD OTA Analyzer (option 049), LTE-TDD 256 QAM Demodulator (option 033), and the LTE-TDD RAN Performance Indicator (option 015). Topics discussed in this chapter are as follows:

Introduction	285
Display overview	286
Connecting a cable	286
Selecting measurement mode	288
Configuring test parameters	288
Conducting spectrum measurements	293
Conducting RF measurements	295
Conducting power vs. time measurements	303
Conducting modulation measurements	307
Performing auto measurements	325
Performing power statistics CCDF measurements	332
Performing carrier aggregation measurements	333
Conducting LTE - TDD OTA measurements	336
Performing RAN performance testing	350

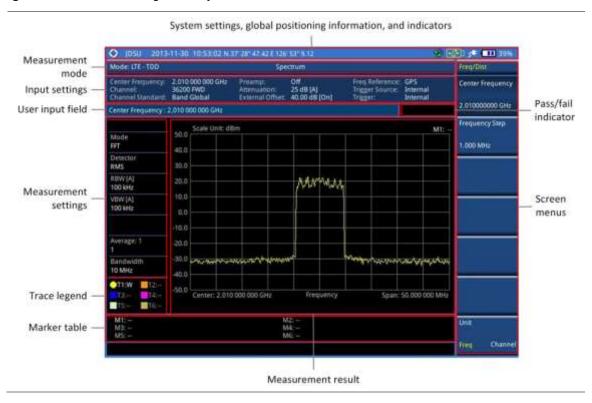
Introduction

The LTE (Long-Term Evolution) Signal Analyzer of the JD780A series performs power and spectrum measurements as well as modulation analysis to test the proper transmitter performance of TDD LTE systems. It performs conformance testing according to the following standards providing a simple Pass/Fail indication on each test.

- 3GPP TS 36.104. Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and Reception
- 3GPP TS 36.141. Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS)
 Conformance Testing
- 3GPP TS 36.211. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation
- 3GPP TS 36.212. Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and Channel Coding
- 3GPP TS 36.213 V8.2.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures

This instrument provides the following measurement tools for TDD LTE system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - Adjacent Channel Leakage power Ratio (ACLR)
 - Multi-ACLR
 - Spurious Emissions
- Power vs. Time: Slot and Frame
- Modulation Analysis
 - Constellation
 - Data Channel
 - Control Channel
 - Subframe
 - Time Alignment Error
 - Data Allocation Map
- Auto Measure
 - Conformance Test
 - Maintenance Test
 - Signal Performance Test
 - DAS Test
- Power Statistics CCDF
- Carrier Aggregation

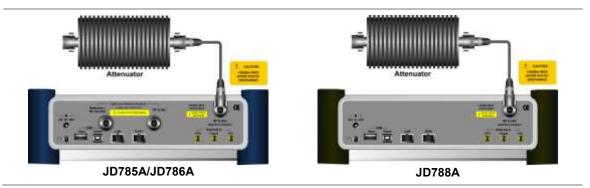

JD780A Series Analyzers

- Over The Air (OTA)
 - Channel Scanner
 - ID Scanner
 - Multipath Profile
 - Control Channel
 - Datagram
 - Route Map
- RAN Performance Indicator

Display overview

Figure 141 provides descriptions for each segment of the measurement screen.

Figure 141 LTE - TDD signal analyzer measurement screen

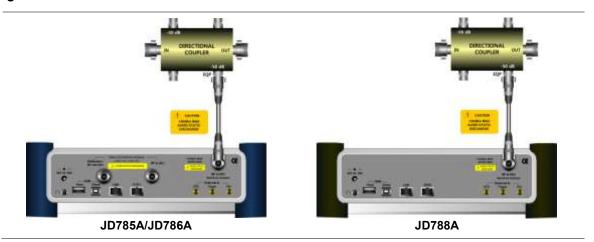

Connecting a cable

Direct connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the Power amplifier output port of BTS.

Figure 142 Direct connection

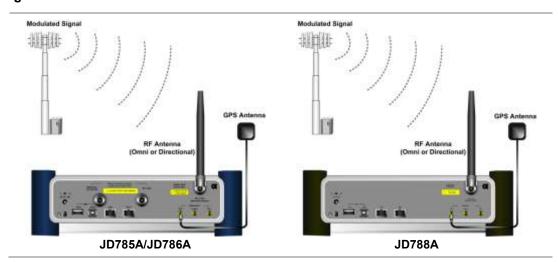


Indirect connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the monitor (test) port of BTS.

Figure 143 Indirect connection


CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

- Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD780A series.
- 2. Connect a GPS antenna to the GPS port of the JD780A series.

Figure 144 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Press the Signal Analyzer soft key.
- 3. Press the LTE TDD soft key. The Spectrum mode is set by default.
- 4. Press the MEASURE hot key, and then select the measurement mode option from the following choices:
 - Spectrum
 - RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACLR, Multi-ACLR, or Spurious Emissions
 - Power vs Time > Power vs Time (Slot) or Power vs Time (Frame)
 - Modulation Analysis > Constellation, Data Channel, Control Channel, Subframe,
 Time Alignement Error, or Data Allocation Map
 - Auto Measure > Conformance Test, Maintenance Test, Signal Perfomance, or DAS Test
 - Power Statistics CCDF
 - More (1/2) > Carrier Aggregation
 - More (1/2) > OTA > Channel Scanner, ID Scanner, Multipath Profile, Control Channel, Datagram, or Route Map
 - More (1/2) > RAN Performance Indicator

NOTE

The **Carrier Aggregation** soft key is activated if the license for the option 031 LTE-Advanced TDD is installed and so does the **RAN Performance Indicator** for the option 015 LTE-TDD RAN Performance Indicator.

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Center Frequency soft key.
- **4.** Enter a value by using the numeric keys. You can also use the rotary knob.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a. Press the Frequency Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1. Press the FREQ/DIST hard key.
- Toggle the Unit soft key and select Channel.

Selecting **Channel** sets the standard channel to **Band Global** automatically so that you can set the **Channel Number** without choosing a standard channel band from the list.

- 3. Press the Channel Number soft key.
- 4. Enter a value by using the numeric keys. You can also use the rotary knob.
- 5. Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- 6. Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a. Press the Channel Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

NOTE

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- Press the Auto Scale soft key.
 Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the unit soft key or the ENTER hard key.

NOTE

In the measurements such as **Control Channel** and **Subframe**, you can select the reference option between **Relative** and **Absolute** instead.

- **3.** To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - **b.** Press the **Attenuation Value** soft key to set the level.
 - **c.** Enter a value between 0 and 55 in fives by using the numeric keys.
 - d. Press the dB soft key or the ENTER hard key.
- To couple the input attenuator's level with your reference level setting, select **Attenuation** Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

To set the scale per division:

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- 3. Enter a value between 1 and 20 by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1. Press the AMP/SCALE hard key.
- **2.** Toggle the **Preamp** soft key and select **On** or **Off** as needed.

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select On.
- 3. Enter a value by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.
- 3. Enter a value between 1 and 100 as needed by using the numeric keys.
- 4. Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

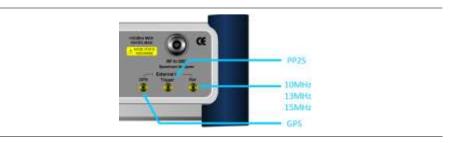
- 1. Press the SWEEP hot key.
- 2. Toggle the **Sweep Mode** soft key and select **Single**. You can also use the **HOLD** hot key. The letter **HOLD** in red appears and the sweeping is paused.
- 3. Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.


Procedure

- 1. Press the TRIGGER hot key.
- 2. Select the trigger source option from the following choices: Internal, External, or GPS.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD780A series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

Figure 145 Connection ports for external reference clock

- 1. Connect an external reference or a GPS antenna to the JD780A series.
- 2. Press the SYSTEM hot key.
- Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

Table 14 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- **4.** If you enable the gated sweep for the guard period, you can easily identify the existence of the interference in uplink call activities.
 - a. To turn it on, toggle the Guard Period soft key and select Enable. The Subframe No menu deactivates.
 - **b.** To turn it off, toggle the Guard Period soft key and select **Disable**.

In LTE-TDD, the guard period is a special subframe, normally Subframe #1 and optionally Subframe #6, where there happens the switching from DL to UL. You should not see any data transmission in the guard period spectrum.

- 5. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

Your measurement result is displayed on the screen as like the following example, Figure 146.

Figure 146 Spectrum measurement screen with LTE - TDD signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the **Select Trace** soft key, and then select the trace number: **T1**, **T2**, **T3**, **T4**, **T5**, or **T6**. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3. Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	М
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m

Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or the rotary knob.

- **4.** Optional. Press the **More (1/2) > Trace Info** soft key, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or **None** to hide the information display.
- 5. Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power and power spectral density (PSD) of the signal in the LTE channel bandwidth.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 4. Toggle the Cell ID soft key and select Auto or Manual as desired:

- Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
- Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

Figure 147 Channel power measurement with LTE - TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 302 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

- c. Press the Enter soft key.
- 4. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

Figure 148 Occupied bandwidth measurement with LTE - TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 302 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates them to the carrier power.


Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. To select the mask type, complete the following steps:
 - Press the Mask Type soft key.
 - **b.** Select the mask type option, from the following choices:
 - Wide Area BS Category A
 - Wide Area BS Category B
 - Local Area BS
 - Home BS
- 4. To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 5. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

Measurement example

Figure 149 SEM measurement with LTE - TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 302 for more information.

ACLR

The Adjacent Channel Leakage power Ratio (ACLR) measures the amount of interference or power in an adjacent frequency channel according to the standards.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 4. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.

Measurement example

Figure 150 ACLR measurement with LTE - TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 302 for more information.

Multi-ACLR

The Multi-ACLR measurement is used to perform multi-channel ACLR measurements with as many channels as possible. It helps you to measure ACLR in multi-channel transmitting Base Station environment.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To set the frequency, do one of the following:
 - To set the center frequency, complete the following steps:
 - a. Toggle the **Unit** soft key and select **Freq**.
 - **b.** Press the **Lowest Frequency** soft key to set the starting center frequency.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Select the unit: GHz, MHz, kHz, or Hz.
 - e. Press the **Highest Frequency** soft key to set the stopping center frequency.
 - f. Enter a value by using the numeric keys. You can also use the rotary knob.
 - g. Select the unit: GHz, MHz, kHz, or Hz.
 - To set the channel number, complete the following steps:
 - a. Toggle the **Unit** soft key and select **Channel**.

NOTE

Selecting **Channel** sets the standard channel to **Band Global** automatically so that you can set the **Channel Number** without choosing a standard channel band from the list.

- **b.** Press the **Lowest Channel** soft key to set the starting channel.
- **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
- d. Press the Enter soft key.
- e. Press the **Highest Channel** soft key to set the stopping channel.
- **f.** Enter a value by using the numeric keys. You can also use the rotary knob.
- g. Press the Enter soft key.

Figure 151 Multi-ACLR measurement with LTE - TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 302 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set up the range table and parameters, press the **Range Table** soft key and then complete the following steps:
 - a. Press the **Range** soft key, and then select the range number between **1** and **20** to add as a new or change the existing settings.
 - **b.** Do the following as desired:
 - Select Start Frequency, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.

- Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
- Select More (1/2) > RBW, and then specify a RBW value.
- Select More (1/2) > VBW, and then specify a VBW value.
- c. Press the PREV hard key.
- d. Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3. Toggle the Measure Type soft key between Examine and Full to select the measurement type.

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 4. To set the number of measurements to be averaged, complete the following steps:
 - a. Press the Average soft key.
 - b. Enter a value between 1 and 100.
 - c. Press the Enter soft key.
- 5. To move the highlighted bar in the result table to other range, complete the following steps:
 - a. Press the Range soft key in the Measure Setup menu bar.
 - b. Enter a value between 1 and 20.
 - c. Press the Enter soft key.

Measurement example

Figure 152 Spurious emissions measurement with LTE - TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 302 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you

desire.

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACLR	ACLR	(On/Off only)
Multi-ACLR	Multi-ACLR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Conducting power vs. time measurements

The Power vs. Time measurement measures the modulation envelope in the time domain, showing the signal rise and fall shape of LTE signal and the power of each time slot in an LTE signal.

Power vs. time (slot)

The Power vs. Time (Slot) in LTE - TDD Signal Analyzer measures the modulation envelope in the time domain, showing the signal rise and fall shapes of LTE signal.

In this measurement, desirable level of the input power is lower than -10 dBm. If the input power to be measured is -10 dBm or higher, it is highly recommended that you use an external attenuator.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.

- 3. To select the slot number to be measured, complete the following steps:
 - a. Press the Slot No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 4. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

Setting limit for power vs. time tests

- 1. Press the LIMIT hot key.
- 2. Press the PvsT Test Limits soft key.
- 3. Select the test item(s) and set the limit(s):

To set the limit for	Select	Set
Slot average power	Slot Avg Power	High Limit, Low Limit
Off power	Off Power	High Limit
Transition period	Transition Period	High Limit

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5.** Optional. Go to **SAVE/LOAD** > **Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Figure 153 Power vs. time (slot) measurement with LTE – TDD signal analyzer

1) Off to on

2) On to off

Power vs. time (frame)

The Power vs. Time (Frame) measures the modulation envelope in the time domain, showing the power of each time slot in an LTE signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

1. Press the MEASURE SETUP hot key.

- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 4. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

Figure 154 Power vs. time (frame) measurement with LTE – TDD signal analyzer

Conducting modulation measurements

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- **2.** To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

c. Press the Enter soft key.

- 4. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. Toggle the CFI soft key and select Auto or Manual as desired:
 - Auto: to let the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.
 - Manual: to set the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by 0, 2, 3 or 4 in 1.4 MHz bandwidth and 1, 2, or 3 in other bandwidths.
- Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- Press the Uplink-Downlink Configuration soft key, and then select the number of uplink/downlink between one and six.
- 8. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in μ s.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

- To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
- Press the PDSCH Modulation Type soft key, and then select the modulation type option: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1. If two or more modulation types are used in a frame, select Auto. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

NOTE

If you have installed a license for the option **033 LTE-TDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

- To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.

- **b.** Enter a value by using the numeric keys.
- c. Press the dB soft key.
- Toggle the PDSCH Precoding soft key between On and Off to enable or disable the PDSCH precoding.

Figure 155 Constellation measurement with LTE - TDD signal analyzer

Figure 156 Constellation measurement with LTE - TDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 324 for more information.

Data channel

The Data Channel measures the constellation for the specified resource block as well as the modulation accuracy of each PDSCH at the specified subframe.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c. Press the Enter soft key.
- Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. Toggle the CFI soft key and select Auto or Manual as desired:
 - Auto: to let the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.
 - Manual: to set the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by 0, 2, 3 or 4 in 1.4 MHz bandwidth and 1, 2. or 3 in other bandwidths.
- Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 7. Toggle the Event Hold soft key between On and Off to enable or disable the event hold feature. When enabled, the display line for the PDSCH threshold appears. When an event occurs, the measurement is put on hold until you press the HOLD hot key.

NOTE

You can view detailed current resource block on the I-Q diagram, particularly in a dynamic field environment.

- Press the More (1/2) > Uplink-Downlink Configuration soft key, and then select the number of uplink/downlink between one and six.
- 9. Optional. Press the More (1/2) > Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4.
 This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-

Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

- To assign a antenna port number automatically or manually, press the Antenna Port soft key and select the option: Auto, 0, 1, 2, and 3. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
- To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
- To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the **MBSFN** soft key and select **Auto** or **Manual**. An automatically detected or manually entered MBSFN ID appears on the screen.
- To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

- To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
- Press the PDSCH Modulation Type soft key, and then select the modulation type option: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1. If two or more modulation types are used in a frame, select Auto. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

NOTE

If you have installed a license for the option **033 LTE-TDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

- To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- Toggle the PDSCH Precoding soft key between On and Off to enable or disable the PDSCH precoding.

Figure 157 Data channel measurement with LTE - TDD signal analyzer

Figure 158 Data channel measurement with LTE - TDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 324 for more information.

Using marker

You can use the **MARKER** hard key to place a marker on a resource block and display the IQ diagram for the selected resource block.

- 1. Press the MARKER hard key.
- 2. Press the **RB Number** soft key to select the resource block to be marked.
- 3. Enter the resource block number by using the numeric keys.
- Press the Enter soft key.
 The marker appears on the selected resource block.
- Toggle the Marker View soft key between On and Off to display or dismiss the result of the selected resource block.

Control channel

The Control Channel measures the constellation for the specified control channel as well as modulation accuracy of the control channel at the specified subframe.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c. Press the Enter soft key.
- **4.** Optional. Toggle the **Cell ID** soft key and select **Auto** or **Manual** as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- **5.** Optional. Toggle the **CFI** soft key and select **Auto** or **Manual** as desired:
 - Auto: to let the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.
 - Manual: to set the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by 0, 2, 3 or 4 in 1.4 MHz bandwidth and 1, 2, or 3 in other bandwidths.
- 6. Optional. Press the PHICH Ng soft key, and then select the option for the number of PHICH groups (Ng): 1/6, 1/2, 1, 2, E-1/6, E-1/2, E-1, or E-2.
- 7. Toggle the EVM Detection Mode soft key and select Single or Combine as desired:

- Single: Testing on one single antenna connected to your JD780A series with a cable.
- Combine: Testing on multiple antennas connected to your JD780A series with a 2x1 or 4x1 combiner or an antenna.
- **8.** Press the **Uplink-Downlink Configuration** soft key, and then select the number of uplink/downlink between one and six.
- 9. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

- To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
- To set the threshold for PDCCH, complete the following steps:
 - a. Press the PDCCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- Toggle the PDCCH Mode soft key and select REG to calculate EVM based on Resource Element Group or Avg to calculate EVM after adding up all the PDCCH signals from one subframe.

Figure 159 Control channel measurement with LTE - TDD signal analyzer

Figure 160 Control channel measurement with LTE - TDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 324 for more information.

Using marker

You can use the **MARKER** hard key to place a marker on a resource block and display the IQ diagram for the selected resource block.

Procedure

1. Press the MARKER hard key.

- 2. Press the **Channel** soft key to select the channel to be displayed in the IQ diagram. The channel P-SS is selected by default.
- 3. Turn the rotary knob to move the highlight from one to another in the channel summary table.
- Toggle the Marker View soft key between On and Off to display or dismiss the result of the selected channel.

Subframe

The Subframe measures the modulation accuracy of all the data and control channels at the specified subframe (1 ms).

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c. Press the Enter soft key.
- 4. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. Toggle the CFI soft key and select Auto or Manual as desired:
 - Auto: to let the instrument set the number of OFDM symbols used for transmitting PDCCHs in a subframe.
 - Manual: to set the number of OFDM symbols manually. The set of OFDM symbols that can be used for PDCCH in a subframe is given by 0, 2, 3 or 4 in 1.4 MHz bandwidth and 1, 2, or 3 in other bandwidths.
- **6.** Optional. Press the **PHICH Ng** soft key, and then select the option for the number of PHICH groups (Ng): **1/6**, **1/2**, **1**, **2**, **E-1/6**, **E-1/2**, **E-1**, or **E-2**.
- 7. Toggle the EVM Detection Mode soft key and select Single or Combine as desired:
 - Single: Testing on one single antenna connected to your JD780A series with a cable.
 - Combine: Testing on multiple antennas connected to your JD780A series with a 2x1 or

4x1 combiner or an antenna.

- **8.** Press the **Uplink-Downlink Configuration** soft key, and then select the number of uplink/downlink between one and six.
- 9. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table and either PMCH or PDSCH appears as well depending on the detected channel.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in μ s.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

- To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
- Press the PDSCH Modulation Type soft key, and then select the modulation type option: Auto, QPSK, 16 QAM, 64 QAM, E-TM3.3, E-TM3.2, E-TM3.1, E-TM2, E-TM1.2, and E-TM1.1. If two or more modulation types are used in a frame, select Auto. If the PDSCH uses the same modulation type in a frame or in a subframe, select a specific modulation type to get more accurate EVM.

NOTE

If you have installed a license for the option **033 LTE-TDD 256 QAM Demodulator** on your CellAdvisor, you will have additional PDSCH modulation types of **256 QAM**, **E-TM3.1a**, and **E-TM2a**.

- To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- To set the threshold for PDCCH, complete the following steps:
 - a. Press the PDCCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- Toggle the PDCCH Mode soft key and select REG to calculate EVM based on Resource Element Group or Avg to calculate EVM after adding up all the PDCCH signals from one subframe.

 Toggle the PDSCH Precoding soft key between On and Off to enable or disable the PDSCH precoding.

Measurement example

Figure 161 Subframe measurement with LTE - TDD signal analyzer

1) Regular view

2) Chart view

Figure 162 Subframe measurement with LTE - TDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 324 for more information.

Setting display

You can use the TRACE/DISPLAY hard key to view your measurement result with the chart.

- 1. Press the TRACE/DISPLAY hard key.
- 2. Toggle the **Chart** soft key between **On** and **Off** to display or dismiss the chart. If this setting is on, the **MARKER** hard key is activated.

Using marker

If you turn the Chart view on, you can use the **MARKER** hard key to place the marker at a specific symbol.

Procedure

- 1. Press the MARKER hard key.
- Toggle the Marker View soft key between On and Off to display or dismiss the marker on the chart.
- 3. Press the Symbol soft key to select the symbol number, to which the marker is placed.
- **4.** Enter a value by using the numeric keys.
- 5. Press the Enter soft key.

Time alignment error

In eNode B supporting Tx Diversity transmission, signals are transmitted from two or more antennas. These signals shall be aligned. The time alignment error in Tx diversity is specified as the delay between the signals from two antennas at the antenna ports.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 4. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the **Antenna Port** soft key and select the option: **Auto**, **0**, **1**, **2**, and **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in μs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

c. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

 To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.

Measurement example

Figure 163 Time alignment error measurement with LTE - TDD signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 324 for more information.

Data allocation map

The Data Allocation Map function represents data allocation as a mapping.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.

- To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c. Press the Enter soft key.
- 4. To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- 5. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 6. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the Antenna Port soft key and select the option: Auto, 0, 1, 2, and 3. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, either PMCH or PDSCH appears on the screen depending on the detected channel.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.

Figure 164 Data allocation map measurement with LTE - TDD signal analyzer

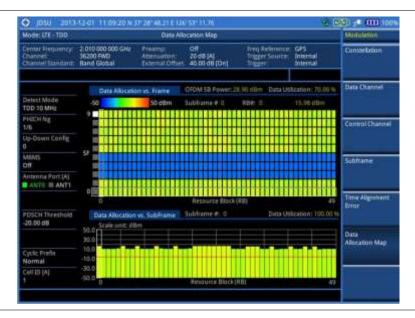


Figure 165 Data allocation map measurement with LTE - TDD signal analyzer (MBMS On)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 324 for more information.

Setting display

You can use the TRACE/DISPLAY hard key to change the display mode to PDSCH, PMCH, or both.

Procedure

Press the TRACE/DISPLAY hard key.

- 2. Press the Display Channel soft key.
- 3. Select the display mode from the choice: PDSCH, PMCH, and Both.

Using marker

You can use the MARKER hard key to place the marker at a specific resource block and subframe.

Procedure

- 1. Press the MARKER hard key.
- Toggle the Marker View soft key between On and Off to display or dismiss the marker on the chart.
- 3. To select the resource block number, complete the following steps:
 - a. Press the RB Number soft key.
 - **b.** Enter the resource block number to select by using the numeric keys. You can also use the rotary knob to move the marker side by side.
 - c. Press the Enter soft key.
- **4.** To select the subframe block number, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter the subframe number to select by using the numeric keys. You can also use the rotary knob to move the marker up and down.
 - c. Press the Enter soft key.

Setting limit for modulation tests

- 1. Press the LIMIT hot key.
- 2. Press the Modulation Test Limits soft key to set the limits.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit Low Limit
PDSCH error vector magnitude if MBMS is off	EVM > PDSCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM) High Limit (256 QAM)*
PMCH error vector magnitude if MBMS is on and a PMCH is detected	EVM > PMCH EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM) High Limit (256 QAM)*
RMS for data error vector magnitude	EVM > Data EVM RMS	High Limit
Peak for data error vector magnitude	EVM> Data EVM Peak	High Limit
RS error vector magnitude	EVM > RS EVM	High Limit

P-SS error vector magnitude	EVM > P-SS EVM	High Limit
S-SS error vector magnitude	EVM > S-SS EVM	High Limit
Downlink RS power	Power > DL RS Power	High Limit Low Limit
P-SS power	Power > P-SS Power	High Limit Low Limit
S-SS power	Power > S-SS Power	High Limit Low Limit
PBCH power	Power > PBCH Power	High Limit Low Limit
Subframe power	Power > Subframe Power	High Limit Low Limit
OFDM symbol power	Power > OFDM Symbol Power	High Limit Low Limit
Time alignment error for MIMO	Time Alignment Error > MIMO	High Limit
Time alignment error for aggregation of component carriers (intra-band contiguous, intra-band non-contiguous, and inter-band)	Time Alignment Error > Carrier Aggregation	Intra Cont Intra Non-cont Inter Band
Time error	Time Error	High Limit Low Limit
I-Q origin offset	IQ Origin Offset	High Limit

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Performing auto measurements

Conformance test

The Conformance Test is to test if eNode-B meets some specified standards that have been developed for verification. Its test procedure and test setups have been developed by 3GPP. Test results can be saved as a .csv file type.

Setting limit for conformance test

You can set test limits for test item(s) in the auto measurement. Turning the test limit on for a test item makes the test item included in the conformance test.

- 1. Press the LIMIT hot key.
- 2. To set the limit for BTS output power, complete the following steps:
 - a. Press the BTS Output Power soft key.

- b. Toggle the Test Limits soft key between On and Off to enable or disable the limit.
- c. Press the High Limit soft key.
- d. Enter a value for the upper limit.
- e. Press the dBm unit soft key.
- f. Press the Low Limit soft key.
- g. Enter a value for the lower limit.
- h. Press the dBm unit soft key.
- 3. To set the limit for total power dynamic, complete the following steps:
 - a. Press the Total Power Dynamic soft key.
 - b. Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the limit.
 - c. Press the Low Limit soft key.
 - d. Enter a value for the lower limit.
 - e. Press the dBm unit soft key.
- 4. To set the limit for on/off power, press the On/Off Power soft key, and then do the following as needed:

To set the limit for	Select	Set
Off power	Off Power	High Limit
Transition period	Transition Period	High Limit

5. To verify signal quality, press the **Signal Quality** soft key, and then do the following as needed:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit Low Limit
Error vector magnitude	EVM	High Limit (QPSK) High Limit (16 QAM) High Limit (64 QAM)
Time alignment error	Time Alignment Error	High Limit
RS power	RS Power	High Limit Low Limit

To verify unwanted emissions, press the Unwanted Emissions soft key, and then do the following as needed:

To set the limit for	Select	Set
Occupied bandwidth	Occupied BW	High Limit
Adjacent channel power ratio	ACLR	
Spectrum emission mask	SEM	Mask Type
Spurious emissions	Spurious Emissions	Range Table

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **8.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Setting measure setup

After setting frequency as described in the "Configuring test parameters" on page 288, you can continue your measurement.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the Bandwidth soft key.
- 3. Select the nominal channel bandwidth to be measured, from the following choices:
 - 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz
- 4. Press the **Sector** soft key, and then select the sector option: **Alpha**, **Beta**, or **Gamma**.
- 5. To set external offset, complete the following steps:
 - a. Toggle the External Offset soft key and select On.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- **6.** To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 33 for more information.
- Press the Run Test soft key to start to run a test.The Auto Measure Results window appears at the end of the test.
- 8. When prompted on the screen, connect the cable from the **Spectrum Analyzer RF In** port of the instrument either to **Antenna Port 0** or **Antenna Port 1** of the eNode-B, and then change the TM mode on the eNode-B side.
- 9. Press the Continue soft key to continue testing.
- Repeat the steps 8-9 until completion of the test.
 A conformance test report appears at the end of the test.
- **11**. *Optional*. To stop running the test, press the **Abort** soft key.

Maintenance test

The Auto Measure function of the JD780A series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 20 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

Following settings are required only when you run the Auto Measure Maintenance Test on the instrument using "Current" configuration setting. Additional settings are not required when you run Auto Measure using a scenario generated in the PC application software, JDViewer.

Setting limit for maintenance test

You can set test limits for test item(s) in the auto measurement.

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key, and then enable test limits as desired.
- 3. Press the PvsT Test Limits soft key, and then enable test limits as desired.
- 4. Press the **Modulation Test Limits** soft key, and then enable test limits as desired.
- 5. Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.

Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.

6. Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

NOTE

You can use the **Allowed % Change** soft key for each test item to compare two measurement values displayed in the result table. This requires setting the **Display** mode to **Compare** in advance.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Toggle the **Configuration** soft key and select the configuration option:
 - Current: to let the instrumnet use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.
 - Scenario: to run a test with a programmed scenario in JDViewer.
 The Scenario menu becomes activated.
- 3. To load a scenario, press the Scenario soft key, and then select a scenario file to load.
- **4.** Toggle the **Test Time** soft key and select the test time option:
 - Now: to let the instrument run a test only once.
 - Schedule: to let the instrument repeat tests as defined in the Set Timing.
 The Set Timing menu becomes activated.
- **5.** To define a schedule for an auto measurement, complete the following steps:
 - a. Press the Set Timing soft key.
 - b. Press the Start Time (HH:MM) soft key.
 - c. Enter the time in the HH:MM format, and then press the Enter soft key.
 - d. Press the Stop Time (HH:MM) soft key.
 - e. Enter the time in the HH:MM format, and then press the **Enter** soft key.
 - f. Press the Time Interval soft key.
 - g. Enter the amount of time in minutes, and then press the Enter soft key.
- 7. Press the **Settings** soft key, and then set the following:
 - **a.** Press the **Bandwidth** soft key, and then select the nominal channel bandwidth to be measured, from the following choices:
 - 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz
 - b. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
 - Press the MIMO soft key, and then select the antenna number option: 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to

- 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
- **d.** Press the **Antenna Port** soft key, and then select the option: **Auto**, **0**, **1**, **2**, or **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
- e. Toggle the External Offset soft key and select On.
- f. Enter a value by using the numeric keys, and then press the dB soft key.
- g. To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number.
- h. To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- 8. To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 33 for more information.
- Press the Run Test soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- 10. To stop running the test, press the **Abort** soft key.
- 11. To change the view on the screen during the test, press the **Display** and then select the view option from the following choices:
 - Screen: You can view each measurement screen as the test progresses.
 - Results: You can view a measurement result table as the test progresses.
 - Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

- 1. Toggle the **Display** soft key and select the display option:
 - **Result**: to view the result table. The Display Result menu becomes activated.
 - Settings: to view the measurement settings for the auto measurement.
- 2. Toggle the **Display Result** soft key and select the display result option:
 - Full: to view detailed measurement readings with the pass/fail indication.
 - Quick: to view only the Pass/Fail results.
 - Compare: to compare two measurement values for each test time with the Allowed %
 Change setting on. You can view results vs. factory-defined or user-defined references.
- **3.** To view the measurement results for a different carrier, press the **View Carrier** soft key and then select the carrier number to view.
- Press the Replace Reference soft key to replace existing reference values for comparison with new measurement data.
- 5. Press the Load From soft key to select the location from which references file to be loaded.

Signal performance test

Unlike the other auto measurement tests, the Signal Performance Test runs measurements

continuously.

Setting limit for signal performance test

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1. Press the LIMIT hot key.
- Press the RF Test Limits > Channel Power soft key, and then set the limits for the channel power. Other RF test items are not used in the signal performance test.
- 3. Press the Modulation Test Limits soft key, and then enable test limits as desired.
- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 3. Press the MIMO soft key, and then select the antenna number option: 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
- 4. Press the Antenna Port soft key, and then select the option: Auto, 0, 1, 2, or 3. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
- 5. Press the **Bandwidth** soft key, and then select the nominal channel bandwidth to be measured, from the following choices:
 - 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz
- **6.** Toggle the **RF Profile** soft key between **On** and **Off** to turn on or off the RF profiling such as channel power and subframe frequency error.
- Toggle the Modulation Profile soft key between On and Off to turn on or off the modulation profiling such as P-SS, S-SS, Data - QPSK, Data - 16 QAM, and Data - 64 QAM.
- 8. Toggle the MIMO Profile soft key between On and Off to turn on or off the MIMO profiling such as TX1 RS0, TX2 RS1, and time alignment error.
- **9.** Toggle the **External Offset** soft key and select **On** to set the external offset value.
- 10. To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 33 for more information.

DAS test

The Distributed Antenna System (DAS) testing enables you to check the degradation of performance in the signal transmission from a radio band to antennas distributed from it. You can save measurement values at both the radio band and antennas and then compare results with percentage of changes. You can also save test results in the .csv file format for ease of analysis.

Setting measure setup

- Press the MEASURE SETUP hot key.
- 2. Press the **Settings** soft key and then set the following;
 - a. Press the Bandwidth soft key and then select the nominal channel bandwidth to be measured from the choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz:
 - b. Press the MIMO soft key, and then select the antenna number option: 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - c. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
 - **d.** Press the **Antenna Port** soft key, and then select the option: **Auto**, **0**, **1**, **2**, or **3**. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - e. Toggle the External Offset soft key and select On to set the external offset value.
 - f. To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off.
 - g. To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- 3. To save your settings, go to SAVE/LOAD > Save > Save Setup and then perform functions as you desire. See "Using save" on page 33 for more information.
- 4. Press the Continue soft key to do the reference test first or press the Skip Reference Test soft key if you already saved test results from the radio band under test.
- 5. Press the FREQ/DIST hard key and then set the frequency to be measured. See "Setting frequency" on page 289 for more information.
- 6. Press the PREV hard key.
- 7. Press the **Limit** soft key and then set the limits and allowed percentage change for each test item. See "Maintenance test" on page 327 for more information on setting limits.
- 8. Keep pressing the **PREV** hard key until you see the Run Test soft key.
- **9.** Press the **Run Test** soft key.

 The instrument runs specified tests to gather reference measurement values. The measurement table appears when the reference test is done.
- 10. Press the Continue soft key to run the testing on an antenna (Ant 1).
- 11. Optional. To change the settings such as External Offset, press the Settings and then change the settings as needed.
- 12. Press the **Continue** soft key.

 The instrument runs the testing on Ant 1. The Ant 1 tab appears with the updated result table

when the test is done.

- **13.** To run the testing on the next antenna (Ant 2), press the **Run Test** soft key and then repeat the steps **11-12**. You can do the testing on up to 10 distributed antennas for one radio band.
- 14. To view test results for each antenna, press the **Select Antenna** soft key and then select the antenna tab number to display on the screen.
- 15. Optional. Press the **Delete** Test soft key to delete the selected antenna tab.
- 16. Optional. Press the Retest Reference soft key to obtain reference measurement values again.
- 17. Optional. To save your measurement results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 33 for more information.

Measurement example

Figure 166 DAS measurement with LTE - TDD signal analyzer

Performing power statistics CCDF measurements

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the CCDF Length soft key to set the length of the CCDF.
- 3. Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4. Press the Enter soft key.

Measurement example

Figure 167 CCDF measurement with LTE - TDD signal analyzer

Performing carrier aggregation measurements

Carrier aggregation enables a maximum of five multiple LTE carriers to be used together in order to provide high data rate required for LTE-Advanced. Component carriers to be aggregated can be intraband contiguous, intra-band non-contiguous, or inter-band. The JD780A series provides carrier aggregation measurements supporting for all the different modes with carrier aggregation bands added to the channel standard. This functionality is activated if the license for the option 031 LTE-Advanced TDD is installed.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To configure parameters for up to 5 component carriers, complete the following steps:
 - a. Press the CA Configuration soft key.

The component carrier configuration window appears.

- b. Press the CA Range soft key.
- c. Enter the number of the component carrier to be set between 1 and 5.
- d. Press the Enter soft key.
- e. Toggle the Turn On soft key and then select On to set parameters and view the results for the selected component carrier on the screen or Off to turn it off.
- f. Set the following parameters as needed:
 - Center Frequency, Channel, Bandwidth, Cell ID, CFI, PHICH Ng, Antenna Port, MBMS On/Off, Cyclic Prefix, and PDSCH Modulation Type
- g. To set more component carriers, repeat the steps c-f.
- 3. Press the **MEASURE SETUP** hot key again.
- 4. Toggle the EVM Detection Mode soft key and select Single or Combine as desired:
 - Single: Testing on one single antenna connected to your JD780A series with a cable.
 - Combine: Testing on multiple antennas connected to your JD780A series with a 2x1 or 4x1 combiner or an antenna.
- 5. To select the subframe number to be measured, do one of the following:
 - If the EVM Detection Mode is set to Single, press the Subframe No soft key and then set the subframe number.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- If the EVM Detection Mode is set to Combine, toggle the Subframe No soft key and then select 0 or 5.
- **6.** To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- Toggle the PDSCH Precoding soft key between On and Off to enable or disable the PDSCH precoding.
- 8. To select the number of antenna ports, toggle the **MIMO** soft key and select **2x2** or **4x4**. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

Setting display

You can use the TRACE/DISPLAY hard key to select modulation analysis or spectrum analysis.

- 1. Press the TRACE/DISPLAY hard key.
- Toggle the Display soft key and select MA for modulation analysis or SA for spectrum analysis. The screen changes according to the selected option.

Measurement example

Figure 168 Carrier aggregation measurement with LTE - TDD signal analyzer (MA)

Figure 169 Carrier aggregation measurement with LTE - TDD signal analyzer (SA)

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 324 for more information.

Using marker

You can use the **MARKER** hard key to place the marker at a specific channel.

Procedure

1. Press the MARKER hard key.

- 2. Toggle the Marker View soft key between On and Off to display or dismiss the marker.
- 3. Press the Channel soft key to select the channel to be displayed on the IQ diagram.
- 4. Use the rotary knob to move and select an item under EVM.

Conducting LTE - TDD OTA measurements

The TDD LTE Over The Air (OTA) measurement has Channel Scanner, ID Scanner, Multipath Profile, Datagram, and Control Channel screens. The ID Scanner displays key parameters such as RSRP, RSRQ, RS-SINR, and S-SS RSSI. The Multipath Profile enables you to determine RF environmental conditions of testing area. The OTA Control Channel provides summary of all control channels including RS power variation over time.

Channel scanner

The Channel Scanner is a radio receiver that can automatically tune or scan two or more discrete frequencies and multi-channels, indicating when it finds a signal on one of them and then continuing scanning when that frequency goes silent.

Setting channel/frequency

Procedure

To set the channels to be scanned:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- **3.** Press the **Index** soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4.** To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - **c.** Press the **Select** soft key or the rotary knob to confirm the selection.
- **5.** To set the channel number for the selected index, complete the following steps:
 - a. Press the Channel Number soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

The instrument displays a corresponding center frequency for the channel number.

- 6. To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **7.** To add more channels to be scanned, repeat steps **3-6**.
- 8. Press the ESC hard key to dismiss the channel list window and view the scanning result.

To set the frequencies to be scanned:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the **Index** soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4.** To set the center frequency for the selected index, complete the following steps:
 - a. Press the Center Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **5.** To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** To add more channels to be scanned, repeat steps **3-5**.
- 7. Press the ESC hard key to dismiss the channel list window and view the scanning result.

Setting number of antenna ports

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Toggle the MIMO soft key and select 2x2 or 4x4.

 This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.

Measurement example

Figure 170 Channel scanner measurement with LTE - TDD OTA signal analyzer

ID scanner

The LTE mobile receives signals from multiple base stations that all of these signals share the same spectrum and are present at the same time. Each base station has unique scrambling code assigned to the particular base station and it differentiates its signal from other base stations in the area.

The ID Scanner shows key parameters such as RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality) that predict the downlink coverage quickly.

- RSRPs from entire cells help to rank between the different cells as input for handover and cell reselection decisions.
- RSRQ provides additional information when RSRP is not sufficient to make a reliable handover or cell reselection decision.

All of the parameters for OTA ID scanner can be plotted on map data such as Google Maps and Google Earth by using JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
- **4.** Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 171 ID scanner measurement with LTE - TDD OTA signal analyzer

Multipath profile

The Multipath Profile enables you to determine RF environmental conditions of testing area. It indicates the amount of power of the dominant pilot signal that is dispersed outside the main correlation peak due to multipath echoes that are expressed in dB. This value should be very small ideally.

The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement.


- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- Toggle the **Display** soft key and select **RS** or **Sync**.
 The RS Window soft key becomes activated if RS is selected.
- 4. Press the RS Window soft key, if RS is selected, and then select the RS window option: $2 \mu s$, $4 \mu s$, or $8 \mu s$.
- 5. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO

channels.

- To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
- **6.** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 172 Multipath profile measurement with LTE - TDD OTA signal analyzer

Control channel

DL RS power is the resource element power of Downlink Reference Symbol. The absolute DL RS power is indicated on the BCH. The absolute accuracy is defined as the maximum deviation between the DL RS power indicated on the BCH and the DL RS power at the BS antenna connector.

The OTA Control Channel provides summary of all control channels including RS power trend over time. GPS coordinates (latitude and longitude) will be displayed on the screen if a GPS antenna is connected and locked to the GPS satellites.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.

- 3. To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

NOTE

For MBMS testing, this subframe number must be neither 0 nor 5 as these subframes 0 and 5 are not available for MBMS and it must be set to the MBMS transmitted channel's subframe number.

- c. Press the Enter soft key.
- 1. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to test on MIMO channels.
 - To assign a antenna port number automatically or manually, press the Antenna Port soft key and select the option: Auto, 0, 1, 2, and 3. If the option 031 LTE-Advanced TDD is not installed or if the MIMO is set to 2x2, the antenna ports 2 and 3 are disabled.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
 - To turn the Multimedia Broadcast Multicast Service (MBMS) feature on or off, toggle the MBMS soft key and select On or Off. For proper MBMS testing, you need to set the Subframe No with the same PMCH subframe number. If this setting is on, the measurement item "MBSFN RS" appears in the result table.
 - To set the Multicast Broadcast Single Frequency Network (MBSFN) detection automatically or manually for MBMS testing, toggle the MBSFN soft key and select Auto or Manual. An automatically detected or manually entered MBSFN ID appears on the screen.
- **6.** Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Setting limit for OTA control channel

- 1. Press the *LIMIT* hot key.
- 2. Select the test item(s) and set the limit(s) as needed:

To set the limit for	Select	Set
P-SS error vector magnitude	P-SS EVM	High Limit
S-SS error vector magnitude	S-SS EVM	High Limit
RS error vector magnitude	RS EVM > RS0 EVM RS EVM > RS1 EVM RS EVM > RS2 EVM RS EVM > RS3 EVM	High Limit
Frequency error	Frequency Error	High Limit Low Limit

Time error	Time Error	High Limit Low Limit
Time alignment error	Time Alignment Error	High Limit

Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings.
 See "Using save" on page 33 for more information.

Setting display

You can use the TRACE/DISPLAY hard key to select the display option.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- Toggle the Display soft key and select Power or EVM. The screen changes according to the selected option.

Measurement example

Figure 173 Control channel measurement with LTE - TDD OTA signal analyzer

Datagram

The OTA Datagram is a time-varying spectral representation that shows how the power of a signal varies with time. The power allocated to the specific resource block will be represented with an amplitude axis (in dBm) and the waterfall diagram will show the trend of past resource block power over certain period. Using a marker function facilitates analysis of accumulated resource block power for data utilization.

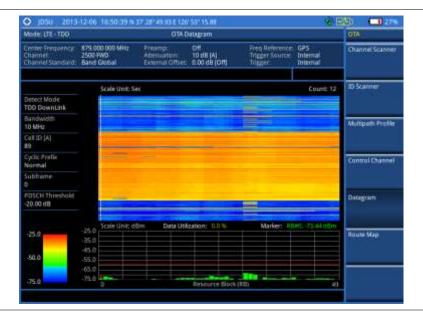
Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 288, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load

the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 4. Optional. Toggle the Cell ID soft key and select Auto or Manual as desired:
 - Auto: to let the instrument detect the Cell ID for the LTE signal automatically.
 - Manual: to set a specific Cell ID for the LTE signal manually in order to speed up the synchronization with a BTS.
- 5. Optional. To set the threshold for PDSCH, complete the following steps:
 - a. Press the PDSCH Threshold soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dB soft key.
- **6.** To set the time cursor at a specific position, complete the following steps:
 - a. Toggle the **Time Cursor** soft key and select **On**.
 - **b.** Turn the rotary knob to move the time cursor. You can also enter a value and then press the **Enter** soft key.


NOTE

Enabling the time cursor puts the measurement on hold and you can make post-processing analysis for each measurement over time using the time cursor.

- 7. To start a new measurement, press the Reset/Restart soft key.
- 8. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select the number of antenna ports, toggle the MIMO soft key and select 2x2 or 4x4. This MIMO (Multiple Input Multiple Output) setting is activated only if the option 031 LTE-Advanced TDD is installed with a license number. If not, the instrument sets this option to 2x2 by default. A 2x1 or 4x1 RF combiner is also required to able to test on MIMO channels.
 - To select the cyclic prefix, toggle the Cyclic Prefix soft key and select Normal or Extended. See "Appendix E – Cyclic prefix table" on page 632 for OFDM parameter details by different bandwidth.
- **9.** Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 174 Datagram measurement with LTE - TDD signal analyzer

Route map

The JD780A Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

If you have obtained user experience data through Viavi's ariesoGEO and generated raster data files from the application, you can load them onto your base map to help you troubleshoot problems easily and quickly.

Setting measure setup

Procedure

- If required, connect a GPS receiver to your JD780A series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2. Configure test parameters as described in the "Configuring test parameters" on page 288.
- 3. To load your map file, complete the following steps:
 - a. Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the Send to EQP menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- b. Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4. Press the MEASURE SETUP hot key.
- 5. Press the Plot Point soft key, and then select the plot point option from the following choices:

To collect data/plot points automatically as you move around in a vehicle or outside, press
the GPS soft key and then toggle the Screen Mode soft key between Map and Full.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

- To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.
- **6.** Press the **Plot Item** soft key, and then select the measurement option: **RSRP**, **RSRQ**, **RS-SINR**, **S-SS RSSI**, **P-SS Power**, **S-SS Power**, or **S-SS Ec/lo**.

NOTE

The instrument collects the strongest Cell ID's data to plot points.

- 7. Press the **Bandwidth** soft key to set the nominal channel bandwidth to be measured, and then select the bandwidth option: **1.4 MHz. 3 MHz. 5 MHz. 10 MHz. 15 MHz.** or **20 MHz**.
- 8. Toggle the Plot soft key and select Start to start plotting.
- Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 10. Toggle the Plot soft key and select Stop to stop plotting.
- Press the SAVE/LOAD hot key to save the result.
 See "Using save" on page 33 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit for route map

You can set the thresholds for each test item.

- 1. Press the LIMIT hot key.
- 2. Select the plot items and set the limits as needed:

To set the limit for	Select	Set
RSRP	RSRP	Excellent, Very Good, Good, Fair, Poor (dBm)
RSRQ	RSRQ	Good, Fair, Poor (dB)
RS-SINR	RS-SINR	Good, Fair, Poor (dB)
S-SS RSSI	S-SS RSSI	Excellent, Very Good, Good, Fair, Poor (dBm)
P-SS Power	P-SS Power	Excellent, Very Good, Good, Fair, Poor (dBm)
S-SS Power	S-SS Power	Excellent, Very Good, Good, Fair, Poor (dBm)
S-SS Ec/lo	S-SS Ec/lo	Good, Fair, Poor (dB)

3. Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Measurement example

Figure 175 Route map measurement with LTE - TDD OTA signal analyzer

1) RSRP

2) RSRQ

3) RS-SINR

4) S-SS RSSI

5) P-SS Power

6) S-SS Power

7) S-SS Ec/lo

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the **Map Control** soft key. This key is active only when you have loaded a sizable map.
- 3. Do one of the following:
 - To zoom into an area of interest directly, complete the following steps:
 - **a.** Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
 - **b.** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.

- c. Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
- **d.** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.
- To zoom into the center or zoom out from the center, complete the following steps:
 - a. Toggle the **Zoom to** soft key and select **Center**.
 - **b.** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
 - c. Move the zoomed-in area by using the four arrow keys, as you need.

Loading and displaying raster data

If you have a set of raster data files generated through the ariesoGEO application, you can load and overlay the data on your base map to help you check the signal quality and the strength of interferences while driving toward the area of interest.

Procedure

- 1. Copy a set of raster data files into your USB memory drive, including the following:
 - ASCII: .tab, .asc, and .clr files
 - BIL: .tab, .hdr, .bil, and .clr files

NOTE

The .tab file type is a geospatial vector data format used in many geographic information systems. The color file (.clr) is an optional file, but the image will be displayed as a grayscale image without it. The size of the raster map must be 1024 x 1024 or smaller.

- 2. Plug in the USB memory drive to your instrument.
- 3. Press the TRACE/DISPLAY hard key.
- Press the Load Raster Map soft key. The file explorer window appears.
- Navigate to the raster file (.tab) you want to open, and then press the Load soft key.
 The raster image appears on top of your base map as shown in Figure 176.

NOTE

If the area of the loaded raster data is not within the boundary of the base map, you will not see the raster image on the screen.

- **6.** To select the display option, complete the following steps:
 - a. Press the Display Options soft key.
 - b. Select the option you desire from the choices: On, Off, and Blink.
- 7. To adjust the transparency level of the image, complete the following steps:
 - a. Press the Transparency soft key.
 - **b.** Enter a value between **0** for opaque and **100** for clear.
 - c. Press the Enter soft key.

Mode: LTE-TEO

Routh Map

Centre Frequency: 2,000 000 001 GHz
Channel: 36300 FW0 Abeliantion: 0 des SM Trigger Source: Internal
Channel: Standard: Sand Global: External Offset: 0.00 dB (or) Trigger Source: Internal
This Standard: Sand Global: External Offset: 0.00 dB (or) Trigger Source: Internal
This Standard: Sand Global: External Offset: 0.00 dB (or) Trigger Source: Internal
This Standard: Sand Global: External Offset: 0.00 dB (or) Trigger Source: Internal
This Standard: Sand Global: External Offset: 0.00 dB (or) Trigger Source: Internal
This Standard: Sand Global: External Offset: 0.00 dB (or) Trigger Source: Internal
This Standard: Sand Global: Sand Globa

Figure 176 Raster image overlaid on the route map in LTE-TDD OTA signal analyzer

Performing RAN performance testing

The JD780A series provides the optional feature that lets you conduct correlated uplink and downlink testing with your instrument connected to your mobile device via Bluetooth. The RANAdvisor TrueSite application installed on your smartphone collects data and transfers uplink data based on your parameter settings and then your instrument consolidates the data into the measurement results and displays them as performance indicators. It helps you troubleshoot a problem and identify the cause of the problem fast.

To perform this testing, you need both of these installed: the license for the option 015 LTE-TDD RAN Performance Indicator on your instrument and the RANAdvisor TrueSite app with the license on your smartphone.

Preparing your smartphone for remote control via Bluetooth

To set up a Bluetooth connection and enable data collection with remote control properly, you need to pair your instrument with your smartphone and set the app's local Bluetooth control option to Slave once at the beginning.

- Connect a Bluetooth adapter to the USB Host port and an Omni antenna to the RF In port of your CellAdvisor instrument.
 - The instrument detects the adapter and turns on its Bluetooth automatically.
- 2. Make your smartphone visible to your instrument by doing the following steps:
 - a. On your smartphone, turn on **Bluetooth**.
 - **b.** Check the checkbox for **Visible to all nearby Bluetooth devices** to enable this option.
- 3. Pair with your smartphone by doing the following steps:
 - a. On your instrument, press the MEASURE SETUP hot key.
 - b. Press the Bluetooth Connect soft key.
 - Press the Scan soft key.
 The instrument lists detected Bluetooth devices with their MAC address and status.

- d. Highlight your mobile device from the list by touching on the screen.
- e. Press the Pair soft key.

The pairing dialog box appears on your smartphone.

- f. On your smartphone, enter 0000 and then tap the OK button.
 If pairing is successful, the status of your device on the list changes to "Paired".
- 4. Make sure to set your smartphone as a slave by completing the following steps:
 - a. On your smartphone, open the RANAdvisor TrueSite icon.
 - b. Go to Settings > General.
 - c. Tap the Automation Control Mode menu under Automation Control Options.
 - d. Select the Local Bluetooth Control option.
 - e. Tap Slave.

The application restart dialog box appears.

f. Tap Continue.
The application closes itself.

NOTE

It is very important for you to set the local Bluetooth control option to **Slave** on the RANAdvisor TrueSite app in order to give your instrument a control to collect necessary data from the app over Bluetooth successfully.

Setting parameters on RANAdvisor TrueSite™

To specify uplink measurement data that will be transferred to your instrument, you need to set map display parameters of your choice on the RANAdvisor TrueSite application.

Procedure

- After you have paired and set your smartphone as a slave, open the RANAdvisor TrueSite
 icon on your device again.
- **2.** Tap the **(+)** button at the bottom of the Home screen. The Main Screen appears.
- **3.** Tap the **Customization** menu. The Choose Operation menu box appears.
- 4. Select Map Display Parameters > LTE Serving and Neighbor Parameters.
- **5.** Make sure to check the checkbox for the following two mandatory parameters:
 - Serving E-ARFCN
 - Serving Physical Cell-ID

NOTE

It is very important for you to select these two parameters to identify the Uplink Channel Number, Cell ID, Group ID, and Sector ID.

6. Select other parameters up to six from the list of parameters supported by the CellAdvisor instrument. See "Appendix L – Supported map display parameters" on page 649 for more information.

NOTE

As the RANAdvisor TrueSite app can transfer data of up to eight parameters at a time, it limits you to select eight parameters in total: two compulsories and six electives. After you have selected all eight parameters, the app blocks any further selection. In this case, you need to uncheck any selected optional parameters in order to enable other optional parameters.

7. Tap the **OK** button and then the **Back** key to return to the Home Screen.

Performing RAN performance testing

After you have set the local Bluetooth control option and selected desired parameters on the app, you need to connect your instrument to your smartphone via Bluetooth to enable data collection from

RANAdvisor TrueSite so that you can view consolidated measurement results on your instrument and save results as a file.

Procedure

- 1. Make sure to have the RANAdvisor TrueSite app opened on your device.
- 2. Press the MEASURE SETUP hot key on your instrument.
- 3. Press the Bluetooth Connect soft key.
- 4. Highlight your paired smartphone to connect from the list.
- Press the Connect soft key.
 The connected device information appears above the RAN Performance Indicator chart to indicate a successful connection.
- 6. The instrument automatically sets the correlated downlink channel number for the received uplink channel number and displays measurement results as like Figure 177. Observe the consolidated measurement results on the screen for your troubleshooting.

NOTE

If the Cell ID of the uplink channel is not identical to the one of the downlink channel, the instrument displays "---" for the parameters to indicate invalid measurement results.

- If you want to see measurement results for other parameters, select new parameters on the RANAdvisor TrueSite app. See "Setting parameters on RANAdvisor TrueSiteTM" on page 279.
- Optional. To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you desire. See "Using save" on page 33 for more information.

Measurement example

Figure 177 RAN performance indicator in LTE-TDD signal analyzer

Setting performance score level

To analyze your measurement data easily with color codes, you can use the limit feature and set a performance score level for each measurement parameter.

Procedure

1. Press the LIMIT hot key.

2. To analyze the quality of user experience, do the following as needed:

To set the level for	Select	Set
Data throughput	Data Throughput	Good, Bad (kbps)
Channel quality indicator	CQI	Good, Bad
Modulation type	Modulation Type	(On/Off only)

3. To check the performance of eNodeB, do the following as needed:

To set the level for	Select	Set
Reference signal received power	RSRP	Good, Bad (dBm)
Reference signal received quality	RSRQ	Good, Bad (dB)
Signal to interference and noise ratio	SINR	Good, Bad (dB)
Error vector magnitude	More (1/2) > EVM	Good, Bad (%)
Time alignment error	More (1/2) > Time Alignment Error	Good, Bad (ns)
Frequency error	More (1/2) > Frequency Error	Good, Bad (ppm)

Using CDMA Signal Analyzer

This chapter provides instructions for using the CDMA Signal Analyzer function (option 020) with the CDMA OTA Analyzer function (option 040). Topics discussed in this chapter are as follows:

Introduction	355
Display overview	356
Connecting a cable	
Selecting measurement mode	358
Configuring test parameters	358
Conducting spectrum measurements	363
Conducting RF measurements	365
Conducting modulation measurements	372
Performing auto measurements	380
Performing power statistics CCDF measurements	382
Conducting CDMA OTA measurements	383

Introduction

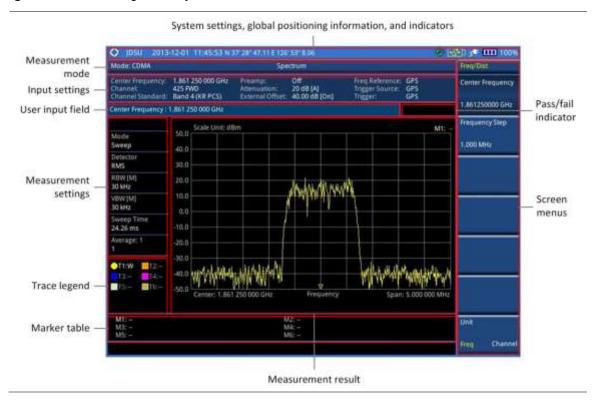
This CDMA Signal Analyzer can be used to test a CDMA transmitter including cdmaOne and cdma2000 signals to check the base station's compliance with following standards documentation.

- 3GPP2 C.S0002 Physical Layer Standard for cdma2000 Spread Spectrum Systems
- 3GPP2 C.S0010 Recommended Minimum Performance Standards for cdma2000 Spread Spectrum Base Station

This instrument automatically makes standard defined measurements using the measurement methods and limits as defined in the standards. Detailed measurement results allow you to analyze cdmaOne and cdma2000 system performance.

- cdmaOne uses dual BPSK (Binary Phase-Shifting Key) for the forward link and OQPSK (Offset Quadrature Phase Shift Keying) for the reverse link.
- cdma2000 uses QPSK (Quadrature Phase Shift Keying) modulation for the forward link and QPSK modulation with HPSK spreading for the reverse link. Both forward and reverse links may have several channels, and individual characteristics for each channel. The chip rate depends on the mode selected.

You may alter the measurement parameters for specialized analysis. Pass/Fail testing with standard defined or user defined upper and lower limits and the Pass/Fail indictor help you to determine base station performance easily.

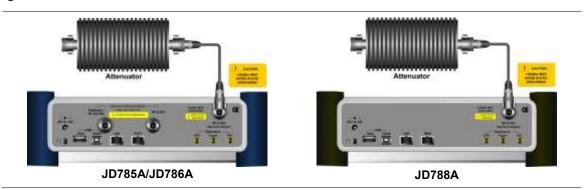

This instrument provides the following measurement tools for CDMA system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask (SEM)
 - Adjacent Channel Power Ratio (ACPR)
 - Multi-ACPR
 - Spurious Emissions
- Modulation Analysis
 - Constellation
 - Code Domain Power
 - Codogram
 - Received Code Strength Indicator (RCSI)
 - CDP Table
- Auto Measure
- Power Statistics CCDF
- Over The Air (OTA)
 - Channel Scanner
 - PN Scanner
 - Multipath Profile
 - Code Domain Power
 - Route Map

Display overview

Figure 178 provides descriptions for each segment of the measurement screen.

Figure 178 CDMA signal analyzer measurement screen

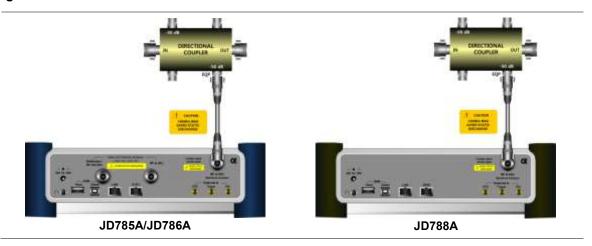

Connecting a cable

Direct connection

Procedure

1. Connect the **Spectrum Analyzer RF In** port of the JD780A series and the Power amplifier output port of BTS.

Figure 179 Direct connection



Indirect connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the monitor (test) port of BTS.

Figure 180 Indirect connection

CAUTION

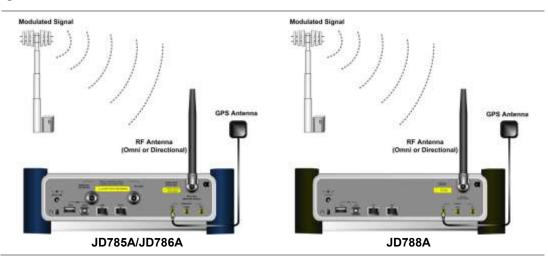
The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

NOTE

For accurate PN Offset and Time Offset measurements with the CDMA Signal Analyzer function, a PP2S should be connected to the External Trigger. Without a GPS connection, measurement results could be invalid numbers.

Over the air (OTA)

Procedure


- Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD780A series.
- 2. Connect a GPS antenna to the GPS port of the JD780A series.

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Figure 181 OTA connection

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Press the Signal Analyzer soft key.
- 3. Press the CDMA soft key. The Spectrum mode is set by default.
- 4. Press the MEASURE hot key, and then select the measurement mode option from the following choices:
 - Spectrum
 - RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACPR, Multi-ACPR, or Spurious Emissions
 - Modulation > Constellation, Code Domain Power, Codogram, RCSI, or CDP Table
 - Auto Measure
 - Power Statistics CCDF
 - OTA > Channel Scanner, PN Scanner, Multipath Profile, Code Domain Power, or Route Map

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.

- 3. Press the Center Frequency soft key.
- **4.** Enter a value by using the numeric keys. You can also use the rotary knob.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** *Optional*. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a. Press the Frequency Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- 3. To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - b. Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c. Press the **Select** soft key or the rotary knob to confirm the selection.
- 4. Press the Channel Number soft key.
- 5. Enter a value by using the numeric keys. You can also use the rotary knob.
- 6. Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a. Press the Channel Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- Press the Auto Scale soft key.
 Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the unit soft key or the ENTER hard key.

NOTE

In the measurements such as **Code Domain Power**, **Codogram**, and **RCSI**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

- **3.** To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - b. Press the Attenuation Value soft key to set the level.
 - **c.** Enter a value between 0 and 55 in fives by using the numeric keys.
 - d. Press the dB soft key or the ENTER hard key.
- To couple the input attenuator's level with your reference level setting, select Attenuation
 Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- 2. Select the unit of the display scale: dBm, dBV, dBmV, dB μ V, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- **3.** Enter a value between 1 and 20 by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- **2.** Toggle the **External Offset** soft key and select **On**.
- 3. Enter a value by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.
- 3. Enter a value between 1 and 100 as needed by using the numeric keys.
- 4. Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to

hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1. Press the SWEEP hot key.
- 2. Toggle the **Sweep Mode** soft key and select **Single**. You can also use the **HOLD** hot key. The letter **HOLD** in red appears and the sweeping is paused.
- 3. Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements. Connecting an external trigger is necessary for accurate modulation measurements on CDMA systems.

Procedure

- 1. Press the TRIGGER hot key.
- 2. Select the trigger source option from the following choices: Internal, External, or GPS.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD780A series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

 Table 15
 Standards of external clock operation

Clock	Туре	Reference	Port	Switching Standard
External Reference	Internal	Internal 10 MHz		Default
	External	External Ref Clock	Ext Ref (SMA)	Manual switching (Input signal level >-3 dBm)
	GPS	GPS Clock	GPS (SMA)	Automatic switching (GPS signal received)
Trigger	Internal	Internal Trigger		Default
	External	External Trigger	Trigger (SMA)	Manual switching
	GPS	GPS	GPS (SMA)	Manual switching

Figure 182 Connection ports for external reference clock

Procedure

- 1. Connect an external reference or a GPS antenna to the JD780A series.
- 2. Press the SYSTEM hot key.
- Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

NOTE

When a GPS antenna is connected and locked, GPS coordinates (longitude and latitude) are displayed on the screen and frequency reference is automatically set to GPS in the **System > Freq Reference**.

Table 16 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

If you have configured test parameters as described in the "Configuring test parameters" on page 358, your measurement result is displayed on the screen as like the following example, Figure 183.

Figure 183 Spectrum measurement screen with CDMA signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the **Select Trace** soft key, and then select the trace number: **T1**, **T2**, **T3**, **T4**, **T5**, or **T6**. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- **3.** Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or the rotary knob.

4. To select the detection option, press the **More (1/2) > Detectors**, and then do one of the following:

To display	Select
Random noise better than the peak without missing signals	Normal
The highest value in each data point	Peak
The root mean squared average power across the spectrum	RMS
The lowest value in each data point	Negative Peak
The center value in each data point	Sample

- 5. Optional. Press the More (1/2) > Trace Info soft key, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or None to hide the information display.
- 6. Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power, power spectral density (PSD) and peak to average ratio (PAR) of the signal within the channel bandwidth (1.23 MHz for cdmaOne).

After configuring test parameters as described in the "Configuring test parameters" on page 358, your measurement result is displayed on the screen as like the following example, Figure 184.

Figure 184 Channel power measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 371 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

After configuring test parameters as described in the "Configuring test parameters" on page 358, your measurement result is displayed on the screen as like the following example, Figure 185.

Figure 185 Occupied bandwidth measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 371 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP2 specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates them to the carrier power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 358, your measurement result is displayed on the screen as like the following example, Figure 186.

Figure 186 SEM measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 371 for more information.

ACPR

The Adjacent Channel Power Ratio (ACPR) is defined as the ratio of the average power in the adjacent frequency channel (or offset) to the average power in the transmitted frequency channel. It may be expressed as the ratio of the integrated signal power in the adjacent channel to the integrated signal power in the main channel.

After configuring test parameters as described in the "Configuring test parameters" on page 358, your measurement result is displayed on the screen as like the following example, Figure 187.

Figure 187 ACPR measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 371 for more information.

Multi-ACPR

The Multi-ACPR measurement is used to perform multi-channel ACPR measurements with as many channels as possible. It helps you to measure ACPR in multi-channel transmitting base station environment.

Setting frequency for Multi-ACPR

You can set the frequency with either frequency or channel number.

- 1. Press the MEASURE SETUP hot key.
- **2.** To set the frequency, do one of the following:
 - To set the center frequency, complete the following steps:
 - Toggle the Unit soft key and select Freq.
 - b. Press the Lowest Frequency soft key to set the starting center frequency.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Select the unit: GHz, MHz, kHz, or Hz.
 - e. Press the **Highest Frequency** soft key to set the stopping center frequency.
 - **f.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - g. Select the unit: GHz, MHz, kHz, or Hz.
 - To set the channel number, complete the following steps:

- a. Toggle the Unit soft key and select Channel.
- b. To select the standard channel, press the Channel Std soft key and then select the band to be measured.
- **c.** Press the **Lowest Channel** soft key to set the starting channel.
- **d.** Enter a value by using the numeric keys. You can also use the rotary knob.
- e. Press the Enter soft key.
- f. Press the **Highest Channel** soft key to set the stopping channel.
- **g.** Enter a value by using the numeric keys. You can also use the rotary knob.
- h. Press the Enter soft key.

After configuring test parameters, your measurement result is displayed on the screen as like the following example, Figure 188.

Figure 188 Multi-ACPR measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 371 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

Procedure

Press the MEASURE SETUP hot key.

- 2. To set up the range table and parameters, press the **Range Table** soft key and then complete the following steps:
 - **a.** Press the **Range** soft key, and then select the range number between **1** and **20** to add as a new or change the existing settings.
 - **b.** Do the following as desired:
 - Select Start Frequency, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.
 - c. Press the PREV hard key.
 - d. Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3. Toggle the Measure Type soft key between Examine and Full to select the measurement type.

NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 4. To set the number of measurements to be averaged, complete the following steps:
 - a. Press the Average soft key.
 - b. Enter a value between 1 and 100, and then press the Enter soft key.
- **5.** To move the highlighted bar in the result table to other range, complete the following steps:
 - a. Press the Range soft key in the Measure Setup menu bar.
 - **b.** Enter a value between **1** and **20**, and then press the **Enter** soft key.

After configuring test parameters as described in the "Configuring test parameters" on page 358, your measurement result is displayed on the screen as like the following example, Figure 189.

Figure 189 Spurious emissions measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 371 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACPR	ACPR	(On/Off only)
Multi-ACPR	Multi-ACPR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Conducting modulation measurements

In order to make accurate measurements of time offset and PN, you must connect an external trigger before making a modulation measurement.

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 358, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a. Toggle the PN Offset soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- **4.** Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 190 Constellation measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 379 for more information.

Code domain power

The Code Domain Power (CDP) measures the distribution of power across the set of code channels, normalized to the total power. It helps to verify that each code channel is operating at its proper level and to identify problems throughout the transmitter design from coding to the RF section. System imperfections such as amplifier non-linearity will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 358, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a. Toggle the PN Offset soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.

- c. Press the Enter soft key.
- 4. To set the threshold between Auto and Manual, complete the following steps:
 - a. Press the Threshold soft key. Its default setting is -27 dB.
 - b. Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c. Press the Enter soft key.
- **5.** Toggle the **Q-Paging** soft key between **On** and **Off** to enable or disable the quick page channel that indicates the power of Quick Page Walsh code 80.
- **6.** Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 191 Code domain power measurement with CDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 379 for more information.

Setting display

You can view .your measurement results in a different view option.

- 1. Press the TRACE/DISPLAY hard key.
- Press the Code Order soft key, and then select the code order option from the following choices:
 - Hadamard: To assign the number based on Walsh code order and display the measured code power according to the assigned number in sequence.
 - Bit Reverse: Code number in binary bit is reversed relative to the Hadamard method.
- 3. Toggle the Base Code Length soft key and select the base Walsh code number: 64 or 128.

Codogram

The Codogram displays how the code level is changing over time and makes it easier for you to view traffic channels as they initiate and terminate and to track traffic channels call levels over time. The Codogram measurements can be saved into an external USB memory so that a post-analysis can be done with the application software JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 358, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a. Toggle the PN Offset soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 4. To set the threshold between Auto and Manual, complete the following steps:
 - a. Press the More (1/2) > Threshold soft key. Its default setting is -27 dB.
 - **b.** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c. Press the Enter soft key.
- 5. Toggle the More (1/2) > Q-Paging soft key between On and Off to enable or disable the quick page channel that indicates the power of Quick Page Walsh code 80.
- **6.** To set the time interval, complete the following steps:
 - a. Press the Time Interval soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 7. To place the time cursor to analyze your measurements, complete the following steps:
 - a. Toggle the **Time Cursor** soft key between **On** and **Off** to enable or disable the time cursor.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

NOTE

When the time cursor is enabled, the measurement is put on hold and information about the time cursor is displayed.

8. Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 192 Codogram in full view with CDMA signal analyzer

Setting display

You can view .your measurement results in a different view option.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Code Order soft key, and then select the code order option from the following choices:
 - Hadamard: To assign the number based on Walsh code order and display the measured code power according to the assigned number in sequence.
 - Bit Reverse: Code number in binary bit is reversed relative to the Hadamard method.
- 3. Toggle the Base Code Length soft key and select the base Walsh code number: 64 or 128.

RCSI

The Received Code Strength Indicator (RCSI) is used to track the power variation of cdmaOne or cdma2000 control channels such as Pilot, Paging, Sync, and Q-Paging over time. The RCSI measurements can be saved into an external USB memory so that a post-analysis can be done with the application software JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 358, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a. Toggle the PN Offset soft key between Auto and Manual.
 - b. Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 4. To set the threshold between Auto and Manual, complete the following steps:
 - a. Press the Threshold soft key. Its default setting is -27 dB.
 - **b.** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c. Press the Enter soft key.
- **5.** Toggle the **Q-Paging** soft key between **On** and **Off** to enable or disable the quick page channel that indicates the power of Quick Page Walsh code 80.
- Press the Alarm Code soft key, and then select the alarm code option: None, Pilot, Page, Sync, or Quick Page.
- 7. To set the alarm mask, complete the following steps:
 - a. Press the Set Mask soft key.
 - b. Enter a value by using the numeric keys.
 - c. Press the [dB|dBm] soft key.
- **8.** Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 193 RCSI measurement with CDMA signal analyzer

Setting display

You can view .your measurement results in a different view option.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Code Order soft key, and then select the code order option from the following choices:
 - Hadamard: To assign the number based on Walsh code order and display the measured code power according to the assigned number in sequence.
 - Bit Reverse: Code number in binary bit is reversed relative to the Hadamard method.
- 3. Toggle the Base Code Length soft key and select the base Walsh code number: 64 or 128.

CDP Table

The CDP Table is used to look at a numeric and textual description of all the active code channels in the signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 358, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a. Toggle the PN Offset soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 4. To set the threshold between Auto and Manual, complete the following steps:
 - a. Press the Threshold soft key. Its default setting is -27 dB.
 - **b.** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c. Press the Enter soft key.
- 5. Toggle the **Q-Paging** soft key between **On** and **Off** to enable or disable the quick page channel that indicates the power of Quick Page Walsh code 80.

Figure 194 CDP Table measurement with CDMA signal analyzer

Setting display

If the CDP table spans over to the next page(s), you can change pages up and down to view .your measurement results.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- Press the Code Order soft key, and then select the code order option from the following choices:
 - Hadamard: To assign the number based on Walsh code order and display the measured code power according to the assigned number in sequence.
 - **Bit Reverse:** Code number in binary bit is reversed relative to the Hadamard method.
- 3. Toggle the Base Code Length soft key and select the base Walsh code number: 64 or 128.
- 4. Select Page Up or Page Down as needed to scroll the screen up and down.

Setting limit for modulation tests

- 1. Press the *LIMIT* hot key.
- 2. Press the Modulation Test Limits soft key.
- **3.** Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit Low Limit
Time offset	Time Offset	High Limit Low Limit

Waveform quality (Rho)	Rho	Low Limit
Carrier feed through	Carrier Feed Through	High Limit
Pilot power	Pilot Power	High Limit [Abs Rel] Low Limit [Abs Rel]
Highest level among inactive channels	Max Inactive	High Limit

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings.
 See "Using save" on page 33 for more information.

NOTE

The Time Offset compares the PN offset timing with the overall system time and the instrument checks the start of PN offset in comparison to either the GPS signal or the even second clock signal.

NOTE

The Rho measures the modulation quality for a CDMA transmitter along with EVM and Walsh Channel Power. It includes all errors occurred along the transmitter chain such as base band filtering, abnormality of I/Q modulator and distortion in power amplifier. A perfect Rho value is 1.0 indicating that all of the power is being transmitted correctly.

NOTE

The Carrier Feed Through is a result of the RF carrier signal feeding through the I/Q modulator and riding on the output circuitry without being modulated.

Performing auto measurements

The Auto Measure function of the JD780A series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform tests on every aspect of all the carriers.

Setting limit for auto measure

You can set test limits for test item(s) in the auto measurement.

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key, and then enable test limits as desired.
- 3. Press the Modulation Test Limits soft key, and then enable test limits as desired.
- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 358, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Toggle the Configuration soft key and select the configuration option:
 - Current: to let the instrumnet use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.
 - Scenario: to run a test with a programmed scenario in JDViewer.
 The Scenario menu becomes activated.
- 3. To load a scenario, press the Scenario soft key, and then select a scenario file to load.
- **4.** Toggle the **Test Time** soft key and select the test time option:
 - Now: to let the instrument run a test only once.
 - Schedule: to let the instrument repeat tests as defined in the Set Timing.
 The Set Timing menu becomes activated.
- 5. To define a schedule for an auto measurement, complete the following steps:
 - a. Press the Set Timing soft key.
 - b. Press the Start Time (HH:MM) soft key.
 - **c.** Enter the time in the HH:MM format, and then press the **Enter** soft key.
 - d. Press the Stop Time (HH:MM) soft key.
 - e. Enter the time in the HH:MM format, and then press the Enter soft key.
 - Press the Time Interval soft key.
 - g. Enter the amount of time in minutes, and then press the Enter soft key.
- **6.** To set external offset, complete the following steps:
 - a. Toggle the External Offset soft key and select On.
 - b. Enter a value by using the numeric keys, and then press the dB soft key.
- **6.** To save your settings and results, go to **SAVE/LOAD > Save** and then perform functions as you desire. See "Using save" on page 33 for more information.
- Press the Run Test soft key to start to run a test.The Auto Measure Results window appears at the end of the test.
- 8. To stop running the test, press the **Abort** soft key.
- 9. To change the view on the screen during the test, press the **Display** and then select the view option from the following choices:
 - Screen: You can view each measurement screen as the test progresses.
 - Results: You can view a measurement result table as the test progresses.
 - Settings: You can view a measurement setting table as the test progresses.

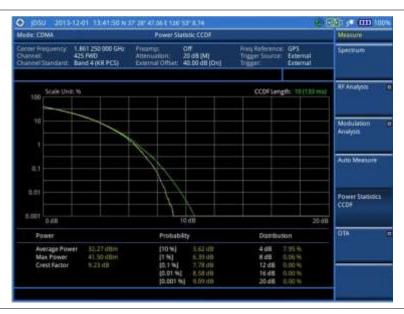
Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

- 1. Toggle the **Display** soft key and select the display option:
 - Result: to view the result table.
 The Display Result menu becomes activated.
 - Settings: to view the measurement settings for the auto measurement.
- 2. Toggle the **Display Result** soft key and select the display result option:
 - Full: to view detailed measurement readings with the pass/fail indication.
 - Quick: to view only the Pass/Fail results.
- 3. To view the measurement results for a different carrier, press the **View Carrier** soft key and then select the carrier number to view.

Performing power statistics CCDF measurements


The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 358, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the CCDF Length soft key to set the length of the CCDF.
- 3. Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4. Press the Enter soft key.

Figure 195 CCDF measurement with CDMA signal analyzer

Conducting CDMA OTA measurements

This Over The Air (OTA) measurement has channel scanner, PN scanner, multipath profile, and Code Domain power screens. It is used to verify CDMA transmitter performance at any location providing reflective measurements and identifying signals providing from different sites. The Code Domain power shows not only modulation performance metric but also amplifier capacity and code utilization metric. The Amplifier capacity (code utilization) measurement is an estimate of the amount of power amplifier capacity (code utilization) that is being used expressed in percent of maximum.

Channel scanner

Setting channel/frequency

Procedure

To set the channels to be scanned:

- 1. Press the FREQ/DIST hard key.
- **2.** Toggle the **Unit** soft key and select **Channel**.
- **3.** Press the **Index** soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4.** To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - **c.** Press the **Select** soft key or the rotary knob to confirm the selection.
- **5.** To set the channel number for the selected index, complete the following steps:
 - a. Press the Channel Number soft key.

- **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
- c. Press the Enter soft key.

The instrument displays a corresponding center frequency for the channel number.

- **6.** To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 7. To add more channels to be scanned, repeat steps 3-6.
- 8. Press the ESC hard key to dismiss the channel list window and view the scanning result.

To set the frequencies to be scanned:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Index soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4.** To set the center frequency for the selected index, complete the following steps:
 - a. Press the Center Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 5. To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** To add more channels to be scanned, repeat steps **3-5**.
- 7. Press the ESC hard key to dismiss the channel list window and view the scanning result.

Setting measure setup

After configuring other test parameters as described in the "Configuring test parameters" on page 358, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Setting limit for OTA channel scanner

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the Limit Line soft key to set a threshold for the limit line and Pass/Fail indication.
- 3. Enter a value, and then press the dBm unit soft key.
- 4. Toggle the Limit Line soft key between On and Off to display or dismiss the limit line.
- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **6.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Measurement example

Figure 196 Channel scanner measurement with CDMA OTA signal analyzer

PN scanner

Each access network sector has a unique PN offset. The PN Scanner is used to identify all the active PNs in an area.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 358, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.

- **b.** Enter a value by using the numeric keys.
- c. Press the Enter soft key.
- Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 197 PN scanner measurement with CDMA OTA signal analyzer

Multipath profile

The Multipath Profile enables you to determine RF environmental conditions of testing area. It indicates the amount of power of the dominant pilot signal that is dispersed outside the main correlation peak due to multipath echoes that are expressed in dB. This value should be very small ideally.

The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.


Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 358, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - b. Enter a value by using the numeric keys.

- c. Press the Enter soft key.
- 3. Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 198 Multipath profile measurement with CDMA OTA signal analyzer

Code domain power

Channels with high correlation factors are determined to be active channels and are indicated as such on the display. Once the channels are decoded, the analyzer determines the power of each channel relative to the total signal power.

This measurement helps to verify that each code channel is operating at its proper level and helps to identify problems throughout the transmitter design from the coding to the RF section. System imperfections, such as the non-linearity of amplifiers, will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

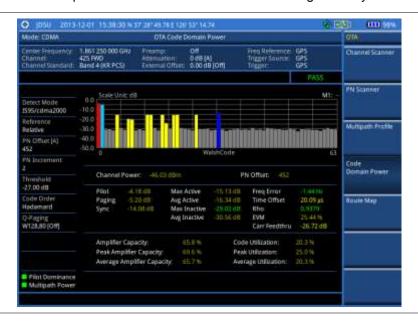
After configuring test parameters as described in "Configuring test parameters" on page 358, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a. Toggle the PN Offset soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.

- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 4. To set the threshold between Auto and Manual, complete the following steps:
 - a. Press the Threshold soft key. Its default setting is -27 dB.
 - **b.** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c. Press the Enter soft key.
- 5. Toggle the **Q-Paging** soft key between **On** and **Off** to enable or disable the quick page channel that indicates the power of Quick Page Walsh code 80.
- **6.** To set the maximum amplifier power, complete the following steps:
 - a. Press the Max Amplifier Power soft key.
 - b. Enter a value by using the numeric keys.
 - c. Press the dBm soft key.
- 7. To set the pilot power, complete the following steps:
 - a. Press the Pilot Power soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the dBm soft key.
- **8.** To set the threshold for pilot dominance, complete the following steps:
 - a. Press the More (1/2) > Pilot Dominance > soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

NOTE

Recommended value is 10. Color of the Pilot Dominance indicator on the screen bases on this setting.


- **9.** To set the threshold for multipath power, complete the following steps:
 - a. Press the More (1/2) > Multipath Power < soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

NOTE

Recommended value is one. Color of the multipath power indicator on the screen bases on this setting.

10. Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 199 Code domain power measurement with CDMA OTA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication.

Setting display

You can view .your measurement results in a different view option.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Code Order soft key, and then select the code order option from the following choices:
 - Hadamard: To assign the number based on Walsh code order and display the measured code power according to the assigned number in sequence.
 - Bit Reverse: Code number in binary bit is reversed relative to the Hadamard method.
- 3. Toggle the Base Code Length soft key and select the base Walsh code number: 64 or 128.

Route map

The JD780A Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

Setting measure setup

Procedure

 If required, connect a GPS receiver to your JD780A series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.

- Configure test parameters as described in the "Configuring test parameters" on page 358.
- 3. To load your map file, complete the following steps:
 - a. Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. . If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the Send to EQP menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- b. Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4. Press the MEASURE SETUP hot key.
- 5. Press the **Plot Point** soft key, and then select the plot point option from the following choices:
 - To collect data/plot points automatically as you move around in a vehicle or outside, press
 the GPS soft key and then toggle the Screen Mode soft key between Map and Full.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen. With the **Full** setting, you can view all the collected points of the route without the loaded map.

- To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.
- 6. Press the Plot Item soft key, and then select the measurement option: Pilot Power or Ec/lo.
- 7. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- **8.** Toggle the **Plot** soft key and select **Start**.
- Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 10. Toggle the Plot soft key and select Stop to stop plotting.
- Press the SAVE/LOAD hot key to save the result.
 See "Using save" on page 33 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit

You can set the thresholds for the four different color indicators for Pilot power or Ec/lo.

Procedure

1. Press the LIMIT hot key.

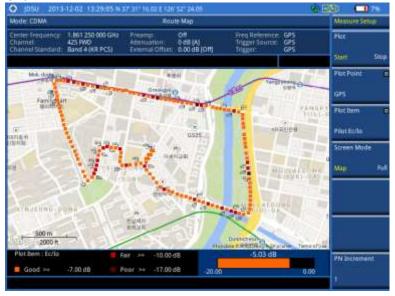

- To set the limits for pilot power if you have selected Pilot for the plot item, complete the following steps:
 - a. Press the Pilot Power soft key.
 - **b.** Press the **Excellent** soft key to set its threshold.
 - c. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
 - d. Press the Very Good soft key to set its threshold.
 - e. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
 - f. Press the Good soft key to set its threshold.
 - g. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
 - h. Press the Fair soft key to set its threshold.
 - i. Enter a value, and then press the **dBm** soft key. You can also use the rotary knob.
 - j. Press the Poor soft key to set its threshold.
 - k. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
- 3. To set the limits for Ec/lo if you have selected as for the plot item, complete the following steps:
 - a. Press the Ec/lo soft key.
 - b. Press the Good soft key to set its threshold.
 - **c.** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
 - d. Press the Fair soft key to set its threshold.
 - **e.** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
 - f. Press the Poor soft key to set its threshold.
 - g. Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Figure 200 Route map measurement with CDMA OTA signal analyzer

1) Pilot Power

2) Pilot Ec/lo

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- 3. Do one of the following:
 - To zoom into an area of interest directly, complete the following steps:
 - **a.** Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
 - **b.** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.
 - **c.** Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
 - **d.** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.
 - To zoom into the center or zoom out from the center, complete the following steps:
 - a. Toggle the **Zoom to** soft key and select **Center**.
 - **b.** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
 - **c.** Move the zoomed-in area by using the four arrow keys, as you need.

Using EV-DO Signal Analyzer

This chapter provides instructions for using the EV-DO Signal Analyzer function (option 021) with the EV-DO OTA Analyzer function (option 041). Topics discussed in this chapter are as follows:

-	Introduction	394
	Display overview	394
	Connecting a cable	395
	Selecting measurement mode	397
	Configuring test parameters	397
	Conducting spectrum measurements	402
	Conducting RF measurements	404
	Conducting power vs. time measurements	411
	Conducting modulation measurements	.413
	Performing auto measurements	423
	Performing power statistics CCDF measurements	.425
	Conducting EV-DO OTA measurements	426

Introduction

The EV-DO Signal Analyzer of the JD780A series performs power and spectrum measurements as well as modulation analysis to test the proper transmitter performance of EV-DO systems. It performs conformance testing according to the following standards providing a simple Pass/Fail indication on each test.

- 3GPP2 C.S0024-B. cdma2000 High Rate Packet Data Air Interface Specification
- 3GPP2 C.S0032-B. Recommended Minimum Performance Standards for cdma2000 High Rate Packet Data Access Network

You may alter the measurement parameters for specialized analysis. Pass/Fail testing with standard defined or user defined upper and lower limits and the Pass/Fail indictor help you to determine base station performance easily.

This instrument provides the following measurement tools for EV-DO system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask (SEM)
 - Adjacent Channel Power Ratio (ACLR)
 - Multi-ACPR
 - Spurious Emissions
- Power vs. Time: Idle Slot and Active Slot
- Modulation Analysis
 - Constellation
 - Code Domain Power
 - MAC Codogram
 - Received Code Strength Indicator (RCSI)
 - MAC CDP Table
- Auto Measure
- Power Statistics CCDF
- Over The Air (OTA)
 - Channel Scanner
 - PN Scanner
 - Multipath Profile
 - Code Domain Power
 - Route Map

Display overview

Figure 201 provides descriptions for each segment of the measurement screen.

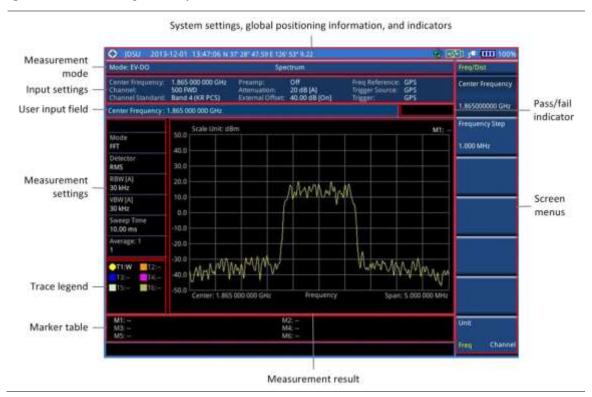
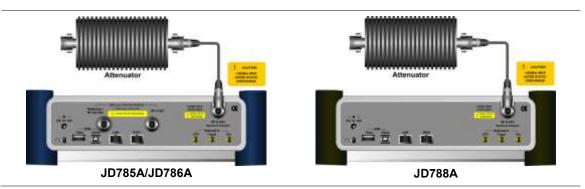


Figure 201 EV-DO signal analyzer measurement screen

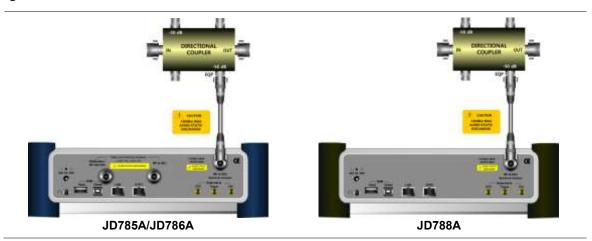

Connecting a cable

Direct connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the Power amplifier output port of BTS.

Figure 202 Direct connection



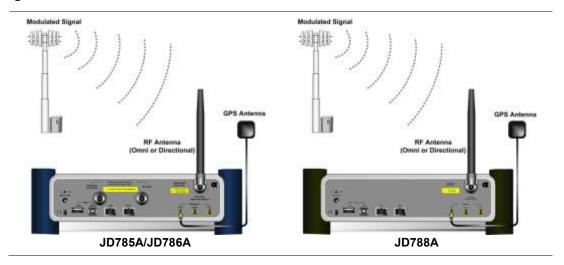
Indirect connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the monitor (test) port of BTS.

Figure 203 Indirect connection

CAUTION


The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

Procedure

- Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD780A series.
- 2. Connect a GPS antenna to the GPS port of the JD780A series.

Figure 204 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Press the Signal Analyzer soft key.
- 3. Press the EV-DO soft key. The Spectrum mode is set by default.
- 4. Press the MEASURE hot key, and then select the measurement mode option from the following choices:
 - Spectrum
 - RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACPR, Multi-ACPR, or Spurious Emissions
 - Power vs Time > Power vs Time (Idle Slot) or Power vs Time (Active Slot)
 - Modulation Analysis > Constellation > Composite 64, Composite 128, Pilot, MAC 64, MAC 128, or Data
 - Modulation Analysis > Code Domain Power > Pilot, MAC 64, MAC 128, or Data
 - Modulation Analysis > MAC Codogram, RCSI, or MAC CDP Table
 - Auto Measure
 - Power Statistics CCDF
 - OTA > Channel Scanner, PN Scanner, Multipath Profile, Code Domain Power, or Route Map

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Center Frequency soft key.
- **4.** Enter a value by using the numeric keys. You can also use the rotary knob.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a. Press the Frequency Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

1. Press the FREQ/DIST hard key.

- Toggle the Unit soft key and select Channel.
- 3. To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c. Press the **Select** soft key or the rotary knob to confirm the selection.
- 4. Press the Channel Number soft key.
- 5. Enter a value by using the numeric keys. You can also use the rotary knob.
- 6. Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a. Press the Channel Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

NOTE

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- Press the Auto Scale soft key.
 Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the unit soft key or the ENTER hard key.

NOTE

In the measurements such as **Code Domain Power** and **MAC Codogram**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

3. To set the attenuation option, select one from the following choices:

To set the input attenuator's level automatically, select Attenuation > Auto.

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - b. Press the Attenuation Value soft key to set the level.
 - c. Enter a value between 0 and 55 in fives by using the numeric keys.
 - d. Press the dB soft key or the ENTER hard key.
- To couple the input attenuator's level with your reference level setting, select **Attenuation** Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W.
 The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- 3. Enter a value between 1 and 20 by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the **Preamp** soft key and select **On** or **Off** as needed.

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select On.
- **3.** Enter a value by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.
- 3. Enter a value between 1 and 100 as needed by using the numeric keys.
- 4. Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1. Press the SWEEP hot key.
- Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3. Optional. Press the **Sweep Once** soft key to get a new measurement.

To return to the continuous sweep mode:

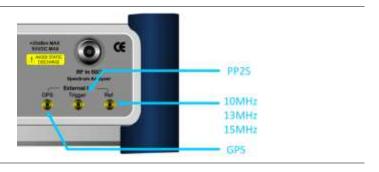
 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements. Connecting an external trigger is necessary for accurate modulation measurements on EV-DO systems.

Procedure

- 1. Press the TRIGGER hot key.
- 2. Select the trigger source option from the following choices: Internal, External, or GPS.


Setting external clock

To enhance the reliability of modulation analysis measurements the JD780A series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

 Table 17
 Standards of external clock operation

Clock	Туре	Reference	Port	Switching Standard
External Reference	Internal	Internal 10 MHz		Default
	External	External Ref Clock	Ext Ref (SMA)	Manual switching (Input signal level >-3 dBm)
	GPS	GPS Clock	GPS (SMA)	Automatic switching (GPS signal received)
Trigger	Internal	Internal Trigger		Default
	External	External Trigger	Trigger (SMA)	Manual switching
	GPS	GPS	GPS (SMA)	Manual switching

Figure 205 Connection ports for external reference clock

Procedure

1. Connect an external reference or a GPS antenna to the JD780A series.

- 2. Press the SYSTEM hot key.
- 3. Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

When a GPS antenna is connected and locked, GPS coordinates (longitude and latitude) are displayed on the screen and frequency reference is automatically set to GPS in the **System > Freq Reference**.

 Table 18
 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

If you have configured test parameters as described in the "Configuring test parameters" on page 397, your measurement result is displayed on the screen as like the following example, Figure 206.

Figure 206 Spectrum measurement screen with EV-DO signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the **Select Trace** soft key, and then select the trace number: **T1**, **T2**, **T3**, **T4**, **T5**, or **T6**. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- **3.** Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or the rotary knob.

- **4.** Optional. Press the **More (1/2) > Trace Info** soft key, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or **None** to hide the information display.
- 5. Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power, power spectral density (PSD) and peak to average ratio (PAR) of the signal in the EV-DO channel bandwidth (1.23 MHz).

After configuring test parameters as described in the "Configuring test parameters" on page 397, your measurement result is displayed on the screen as like the following example, Figure 207.

Figure 207 Channel power measurement with EV-DO signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 410 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

After configuring test parameters as described in the "Configuring test parameters" on page 397, your measurement result is displayed on the screen as like the following example, Figure 208.

Figure 208 Occupied bandwidth measurement with EV-DO signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 410 for more

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP2 specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates them to the carrier power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 397, your measurement result is displayed on the screen as like the following example, Figure 209.

Figure 209 SEM measurement with EV-DO signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 410 for more information.

ACPR

The Adjacent Channel Power Ratio (ACPR) is defined as the ratio of the average power in the adjacent frequency channel (or offset) to the average power in the transmitted frequency channel. It may be expressed as the ratio of the integrated signal power in the adjacent channel to the integrated signal power in the main channel.

After configuring test parameters as described in the "Configuring test parameters" on page 397, your measurement result is displayed on the screen as like the following example, Figure 210.

Figure 210 ACPR measurement with EV-DO signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 410 for more information.

Multi-ACPR

The Multi-ACPR measurement is used to perform multi-channel ACPR measurements with as many channels as possible. It helps you to measure ACPR in multi-channel transmitting Base Station environment.

Setting frequency for Multi-ACPR

You can set the frequency with either frequency or channel number.

- 1. Press the MEASURE SETUP hot key.
- **2.** To set the frequency, do one of the following:
 - To set the center frequency, complete the following steps:
 - a. Toggle the Unit soft key and select Freq.
 - **b.** Press the **Lowest Frequency** soft key to set the starting center frequency.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Select the unit: GHz, MHz, kHz, or Hz.
 - e. Press the **Highest Frequency** soft key to set the stopping center frequency.
 - **f.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - g. Select the unit: GHz, MHz, kHz, or Hz.
 - To set the channel number, complete the following steps:

- a. Toggle the Unit soft key and select Channel.
- b. To select the standard channel, press the Channel Std soft key and then select the band to be measured.
- c. Press the Lowest Channel soft key to set the starting channel.
- **d.** Enter a value by using the numeric keys. You can also use the rotary knob.
- e. Press the Enter soft key.
- **f.** Press the **Highest Channel** soft key to set the stopping channel.
- **g.** Enter a value by using the numeric keys. You can also use the rotary knob.
- h. Press the Enter soft key.

After configuring the test parameters, your measurement result is displayed on the screen as like the following example, Figure 211.

Figure 211 Multi-ACPR measurement with EV-DO signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 410 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

Procedure

1. Press the MEASURE SETUP hot key.

- 2. To set up the range table and parameters, press the **Range Table** soft key and then complete the following steps:
 - a. Press the Range soft key, and then select the range number between 1 and 20 to add as a new or change the existing settings.
 - **b.** Do the following as desired:
 - Select Start Frequency, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.
 - c. Press the PREV hard key.
 - **d.** Toggle the **Range** soft key and select **On** to display the selected range in the result table or **Off** to hide it from the table.
- 3. Toggle the Measure Type soft key between Examine and Full to select the measurement type.

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 4. To set the number of measurements to be averaged, complete the following steps:
 - a. Press the Average soft key.
 - b. Enter a value between 1 and 100.
 - c. Press the Enter soft key.
- 5. To move the highlighted bar in the result table to other range, complete the following steps:
 - a. Press the Range soft key in the Measure Setup menu bar.
 - b. Enter a value between 1 and 20.
 - c. Press the Enter soft key.

After configuring test parameters as described in the "Configuring test parameters" on page 397, your measurement result is displayed on the screen as like the following example, Figure 212.

Figure 212 Spurious emissions measurement with EV-DO signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 410 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACPR	ACPR	(On/Off only)
Multi-ACPR	Multi-ACPR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Conducting power vs. time measurements

The Power vs. Time (Idle Slot and Active Slot) in EV-DO Signal Analyzer verifies that the transmitter output power has correct amplitude, shape, and timing for the EV-DO format.

- Idle Slot: Slot with no data in traffic channel.
- Active Slot: Slot with the loaded data in traffic channel.

Forward link of 1xEV-DO is a frame structure and each frame consists of 16 slots. The frame period for 1xEV-DO is 26.667 ms, which is also the period of one pilot channel. Each frame is divided into 16 slots of 1.666 ms. 1xEV-DO uses CDMA modulation scheme, but unlike its previous systems the Pilot, MAC (Media Access Control), and Data (Traffic) Channel are not transmitted simultaneously; instead they are transmitted in TDM (Time Division Multiplex).

Power vs. time (idle slot)

The Power vs. Time (Idle Slot) measurement provides the idle slot that includes the Pilot and MAC channels with the masks in all regions.

After configuring test parameters as described in the "Configuring test parameters" on page 397, your measurement result is displayed on the screen as like the following example, Figure 213.

Figure 213 Power vs. time (idle slot) measurement with EV-DO signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for power vs. time tests" on page 412 for more information.

Power vs. time (active slot)

The Power vs. Time (Active Slot) measurement includes the Pilot, MAC, and Data channels with the upper and lower masks.

After configuring test parameters as described in the "Configuring test parameters" on page 397, your

measurement result is displayed on the screen as like the following example, Figure 214.

Figure 214 Power vs. time (active slot) measurement with EV-DO signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for power vs. time tests" on page 412 for more information.

Setting limit for power vs. time tests

- 1. Press the LIMIT hot key.
- 2. Press the PvsT Test Limits soft key.
- 3. Select the test item(s) and set the limit(s):

To set the limit for	Select	Set
Pilot power	Pilot Power	High Limit Low Limit
Medium access control power	MAC Power	High Limit Low Limit
Data power during the data period	Data Power	High Limit Low Limit
On/off power ratio of the pilot and MAC powers to the data power	On/Off Ratio	Low Limit

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Conducting modulation measurements

In order to make accurate measurements of time offset and PN, you must connect an external trigger before making a modulation measurement.

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 397, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

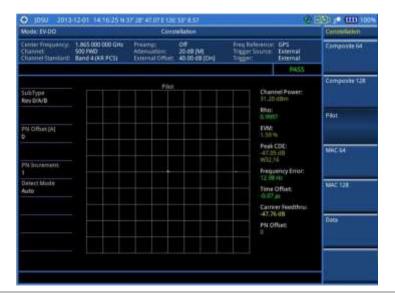
Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a. Toggle the PN Offset soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- Press the Detect Mode soft key, and then select the detection mode option: Auto, QPSK, 8PSK, 16 QAM, or 64 QAM.
- 5. Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 422 for more information. *The Max Inactive is not used in the Constellation mode.*

Figure 215 Constellation measurement with EV-DO signal analyzer


1) Composite 64


2) Composite 128

3) Pilot

4) MAC 64

5) MAC 128

6) Data

Code domain power

The Code Domain Power (CDP) measures the distribution of power across the set of code channels, normalized to the total EV-DO power. It helps to verify that each code channel is operating at its proper level and to identify problems throughout the transmitter design from coding to the RF section. System imperfections such as amplifier non-linearity will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 397, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a. Toggle the PN Offset soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 4. To set the threshold between Auto and Manual, complete the following steps:
 - a. Press the **Threshold** soft key. Its default setting is -27 dB.
 - **b.** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c. Press the Enter soft key.
- 5. Press the Detect Mode soft key, and then select the detection mode option: Auto, QPSK,

8PSK, 16 QAM, or 64 QAM.

6. Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication for the Max Inactive. See "Setting limit for modulation tests" on page 422 for more information.

Measurement example

Figure 216 Code domain power measurement with EV-DO signal analyzer

1) Pilot


2) MAC 64

3) MAC 128

4) Data

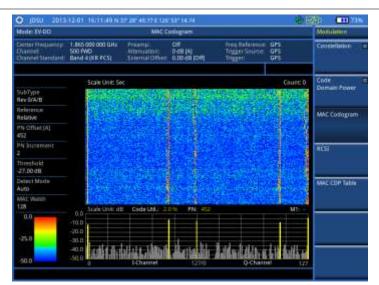
MAC Codogram

The MAC Codogram displays the power variation for every code over time, presenting a clear view of the traffic load per channels at any given time. The MAC Codogram measurements can be saved into an external USB memory so that a post-analysis can be done with the application software JDViewer.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 397, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:


- a. Toggle the PN Offset soft key between Auto and Manual.
- b. Enter a value by using the numeric keys to set manually.
- c. Press the Enter soft key.
- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 4. To set the threshold between Auto and Manual, complete the following steps:
 - a. Press the Threshold soft key. Its default setting is -27 dB.
 - **b.** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c. Press the Enter soft key.
- 5. Toggle the MAC soft key and select the MAC Walsh code option: 64 or 128.
- **6.** To set the time interval, complete the following steps:
 - a. Press the Time Interval soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 7. To place the time cursor to analyze your measurements, complete the following steps:
 - a. Toggle the Time Cursor soft key between On and Off to enable or disable the time cursor.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

When the time cursor is enabled, the measurement is put on hold and information about the time cursor is displayed.

8. Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 217 MAC Codogram in full view with EV-DO signal analyzer

RCSI

The Received Code Strength Indicator (RCSI) is used to track the power variation over time of EV-DO channels: Pilot, MAC, Data, and Slot. The RCSI measurements can be saved into an external USB memory so that a post-analysis can be done with the application software JDViewer.

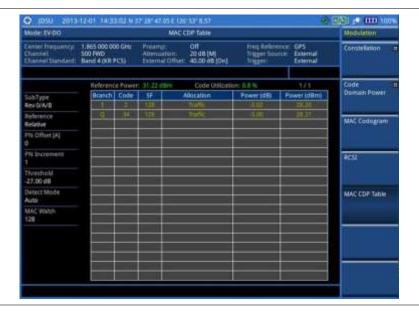
Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 397, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a. Toggle the PN Offset soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 4. To set the threshold between Auto and Manual, complete the following steps:
 - a. Press the **Threshold** soft key. Its default setting is -27 dB.
 - **b.** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c. Press the Enter soft key.
- 5. Toggle the MAC soft key and select the MAC Walsh code option: 64 or 128.
- Press the Alarm Code soft key, and then select the alarm code option: None, Pilot, MAC, Data, or Slot.
- 7. To set the alarm mask, complete the following steps:
 - a. Press the Set Mask soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the [dB|dBm] soft key.
- **8.** Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 218 RCSI measurement with EV-DO signal analyzer

MAC CDP Table


The MAC CDP Table is used for the user to look at a numeric and textual description of all the active control channels in the signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 397, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a. Toggle the PN Offset soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 4. To set the threshold between Auto and Manual, complete the following steps:
 - a. Press the Threshold soft key. Its default setting is -27 dB.
 - **b.** Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c. Press the Enter soft key.
- 5. Toggle the MAC soft key and select the MAC Walsh code option: 64 or 128.

Figure 219 MAC CDP Table measurement with EV-DO signal analyzer

Setting display

If the MAC CDP table spans over to the next page(s), you can change pages up and down to view .your measurement results.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Select Page Up or Page Down as needed to scroll the screen up and down.

Setting limit for modulation tests

- 1. Press the LIMIT hot key.
- 2. Press the Modulation Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit Low Limit
Time offset	Time Offset	High Limit Low Limit
Carrier feed through	Carrier Feed Through	High Limit
Highest level among inactive channels	Max Inactive	High Limit
Waveform quality (Rho) for pilot	Pilot Rho	Low Limit
Waveform quality (Rho) for MAC	MAC Rho	Low Limit
Waveform quality (Rho) for data	Data Rho	Low Limit

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

The Time Offset compares the PN offset timing with the overall system time and the instrument checks the start of PN offset in comparison to either the GPS signal or the even second clock signal.

NOTE

The Carrier Feed Through is a result of the RF carrier signal feeding through the I/Q modulator and riding on the output circuitry without being modulated.

Performing auto measurements

The Auto Measure function of the JD780A series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform tests on every aspect of all the carriers.

Setting limit for auto measure

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1. Press the *LIMIT* hot key.
- 2. Press the RF Test Limits soft key, and then enable test limits as desired.
- 3. Press the PvsT Test Limits soft key, and then enable test limits as desired.
- 4. Press the Modulation Test Limits soft key, and then enable test limits as desired.
- 5. Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- **6.** Optional. Go to **SAVE/LOAD** > **Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 397, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. Toggle the Configuration soft key and select the configuration option:

- Current: to let the instrumnet use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.
- Scenario: to run a test with a programmed scenario in JDViewer.
 The Scenario menu becomes activated.
- **3.** To load a scenario, press the **Scenario** soft key, and then select a scenario file to load.
- **4.** Toggle the **Test Time** soft key and select the test time option:
 - Now: to let the instrument run a test only once.
 - Schedule: to let the instrument repeat tests as defined in the Set Timing.
 The Set Timing menu becomes activated.
- **5.** To define a schedule for an auto measurement, complete the following steps:
 - a. Press the Set Timing soft key.
 - b. Press the Start Time (HH:MM) soft key.
 - c. Enter the time in the HH:MM format, and then press the Enter soft key.
 - d. Press the Stop Time (HH:MM) soft key.
 - **e.** Enter the time in the HH:MM format, and then press the **Enter** soft key.
 - Press the Time Interval soft key.
 - g. Enter the amount of time in minutes, and then press the **Enter** soft key.
- **6.** Press the **Settings** soft key, and then set the following:
 - a. Toggle the MAC soft key and select the MAC Walsh code option: 64 or 128.
 - b. Toggle the PvsT soft key and select the slot option: Idle or Active.
 - c. Toggle the External Offset soft key and select On.
 - d. Enter a value by using the numeric keys, and then press the dB soft key.
- To save your settings and results, go to SAVE/LOAD > Save and then perform functions as you
 desire. See "Using save" on page 33 for more information.
- **8.** Press the **Run Test** soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- 9. To stop running the test, press the Abort soft key.
- 10. To change the view on the screen during the test, press the **Display** and then select the view option from the following choices:
 - Screen: You can view each measurement screen as the test progresses.
 - Results: You can view a measurement result table as the test progresses.
 - Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

- 1. Toggle the **Display** soft key and select the display option:
 - Result: to view the result table.
 The Display Result menu becomes activated.
 - Settings: to view the measurement settings for the auto measurement.
- 2. Toggle the Display Result soft key and select the display result option:

- Full: to view detailed measurement readings with the pass/fail indication.
- Quick: to view only the Pass/Fail results.
- 3. To view the measurement results for a different carrier, press the **View Carrier** soft key and then select the carrier number to view.

Performing power statistics CCDF measurements

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 397, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the CCDF Length soft key to set the length of the CCDF.
- 3. Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4. Press the Enter soft key.

Measurement example

Figure 220 CCDF measurement with EV-DO signal analyzer

Conducting EV-DO OTA measurements

This Over The Air (OTA) measurement has channel scanner, PN scanner, multipath profile, and Code Domain power screens. It is used to verify EV-DO transmitter performance at any location providing reflective measurements and identifying signals providing from different sites. The Code Domain power shows not only modulation performance metric but also amplifier capacity and code utilization metric. The Amplifier capacity (code utilization) measurement is an estimate of the amount of power amplifier capacity (code utilization) that is being used expressed in percent of maximum.

Channel scanner

Setting channel/frequency

Procedure

To set the channels to be scanned:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- 3. Press the **Index** soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4.** To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - b. Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - **c.** Press the **Select** soft key or the rotary knob to confirm the selection.
- **5.** To set the channel number for the selected index, complete the following steps:
 - a. Press the Channel Number soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

The instrument displays a corresponding center frequency for the channel number.

- **6.** To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 7. To add more channels to be scanned, repeat steps 3-6.
- 8. Press the ESC hard key to dismiss the channel list window and view the scanning result.

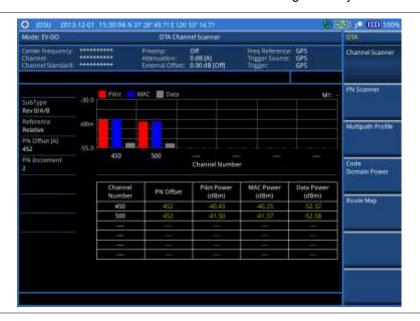
To set the frequencies to be scanned:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the **Index** soft key, and then enter an index number between one and six by turning the rotary knob or using the numeric keys.
- **4.** To set the center frequency for the selected index, complete the following steps:
 - a. Press the Center Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.

- 5. To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** To add more channels to be scanned, repeat steps **3-5**.
- 7. Press the ESC hard key to dismiss the channel list window and view the scanning result.

Setting measure setup

After configuring other test parameters as described in the "Configuring test parameters" on page 397, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.


Procedure

- Press the MEASURE SETUP hot key.
- 2. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - b. Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 3. Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Setting limit for OTA channel scanner

- 1. Press the LIMIT hot key.
- 2. Press the Limit Line soft key to set a threshold for the limit line and Pass/Fail indication.
- 3. Enter a value, and then press the dBm unit soft key.
- 4. Toggle the Limit Line soft key between On and Off to display or dismiss the limit line.
- 5. Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- **6.** Optional. Go to **SAVE/LOAD** > **Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Figure 221 Channel scanner measurement with EV-DO OTA signal analyzer

PN scanner

Each access network sector has a unique PN offset. The PN Scanner is used to identify all the active PNs in an area.

Setting measure setup

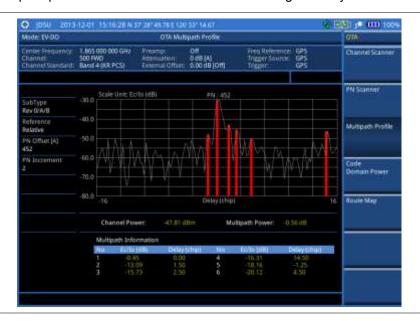
After configuring test parameters as described in the "Configuring test parameters" on page 397, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 3. Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 222 PN scanner measurement with EV-DO OTA signal analyzer

Multipath profile

The Multipath Profile enables you to determine RF environmental conditions of testing area. It indicates the amount of power of the dominant pilot signal that is dispersed outside the main correlation peak due to multipath echoes that are expressed in dB. This value should be very small ideally.


The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 397, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 3. Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 223 Multipath profile measurement with EV-DO OTA signal analyzer

Code domain power

Channels with high correlation factors are determined to be active channels and are indicated as such on the display. Once the channels are decoded, the analyzer determines the power of each channel relative to the total signal power.

This measurement helps to verify that each code channel is operating at its proper level and helps to identify problems throughout the transmitter design from the coding to the RF section. System imperfections, such as the non-linearity of amplifiers, will present themselves as an undesired distribution of power in the code domain.

Setting measure setup

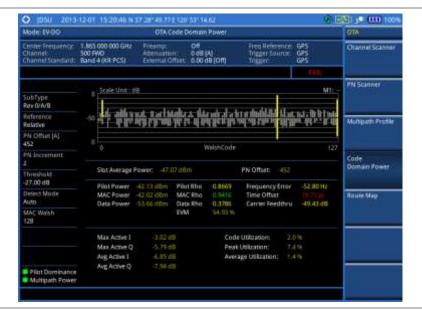
After configuring test parameters as described in "Configuring test parameters" on page 397, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the Pseudo-Noise (PN) offset, complete the following steps:
 - a. Toggle the PN Offset soft key between Auto and Manual.
 - **b.** Enter a value by using the numeric keys to set manually.
 - c. Press the Enter soft key.
- 3. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

- 4. To set the threshold between Auto and Manual, complete the following steps:
 - a. Press the Threshold soft key. Its default setting is -27 dB.
 - b. Enter a value between -50 and zero by using the numeric keys to change the value in the Manual mode.
 - c. Press the Enter soft key.
- 5. Toggle the MAC soft key and select the MAC Walsh code option: 64 or 128.
- Press the Detect Mode soft key, and then select the detection mode option: Auto, QPSK, 8PSK, 16 QAM, or 64 QAM.
- 7. To set the threshold for pilot dominance, complete the following steps:
 - a. Press the Pilot Dominance > soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

Recommended value is 10. Color of the Pilot Dominance indicator on the screen bases on this setting.

- 8. To set the threshold for multipath power, complete the following steps:
 - a. Press the Multipath Power < soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.


NOTE

Recommended value is one. Color of the multipath power indicator on the screen bases on this setting.

9. Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 224 Code domain power measurement with EV-DO OTA signal analyzer

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication.

Route map

The JD780A Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

Setting measure setup

Procedure

- If required, connect a GPS receiver to your JD780A series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2. Configure test parameters as described in the "Configuring test parameters" on page 397.
- 3. To load your map file, complete the following steps:
 - a. Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the Send to EQP menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- b. Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4. Press the MEASURE SETUP hot key.
- 5. Press the Plot Point soft key, and then select the plot point option from the following choices:
 - To collect data/plot points automatically as you move around in a vehicle or outside, press
 the GPS soft key and then toggle the Screen Mode soft key between Map and Full.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

- To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.
- 6. Press the Plot Item soft key, and then select the measurement option: Pilot Power or Ec/lo.
- 7. To set the incremental step for the PN offset, complete the following steps:
 - a. Press the PN Increment soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- 8. Toggle the Plot soft key and select Start.
- **9.** Touch directly on the screen or press the **ENTER** hard key to collect data and plot points on the loaded map for the **Position** setting.

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 10. Toggle the Plot soft key and select Stop to stop plotting.
- **11.** Press the **SAVE/LOAD** hot key to save the result. See "Using save" on page 33 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit

You can set the thresholds for the four different color indicators for Pilot power or Ec/lo.

- 1. Press the LIMIT hot key.
- To set the limits for pilot power if you have selected Pilot for the plot item, complete the following steps:
 - a. Press the Pilot Power soft key.
 - b. Press the Excellent soft key to set its threshold.
 - c. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
 - d. Press the Very Good soft key to set its threshold.
 - e. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
 - f. Press the Good soft key to set its threshold.
 - g. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
 - h. Press the Fair soft key to set its threshold.
 - i. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
 - Press the Poor soft key to set its threshold.
 - k. Enter a value, and then press the dBm soft key. You can also use the rotary knob.
- 3. To set the limits for Ec/lo if you have selected as for the plot item, complete the following steps:
 - a. Press the Ec/lo soft key.
 - **b.** Press the **Good** soft key to set its threshold.
 - **c.** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
 - d. Press the Fair soft key to set its threshold.
 - **e.** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
 - f. Press the Poor soft key to set its threshold.
 - g. Enter a value, and then press the Enter soft key. You can also use the rotary knob.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Measurement example

Figure 225 Route map measurement with EV-DO OTA signal analyzer

1) Pilot Power

2) Pilot Ec/lo

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- 3. Do one of the following:
 - To zoom into an area of interest directly, complete the following steps:
 - a. Toggle the **Zoom to** soft key and select **Area**.

- The black rectangle appears on the map.
- **b.** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.
- **c.** Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
- **d.** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.
- To zoom into the center or zoom out from the center, complete the following steps:
 - a. Toggle the **Zoom to** soft key and select **Center**.
 - b. Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
 - c. Move the zoomed-in area by using the four arrow keys, as you need.

Using TD-SCDMA Signal Analyzer

This chapter provides instructions for using the TD-SCDMA Signal Analyzer function (option 025) with the TD-SCDMA OTA Analyzer function (option 045). Topics discussed in this chapter are as follows:

Introduction	437
Display overview	438
Connecting a cable	438
Selecting measurement mode	440
Configuring test parameters	440
Conducting spectrum measurements	445
Conducting RF measurements	446
Conducting power vs. time measurements	454
Conducting modulation measurements	460
Performing auto measurements	467
Conducting TD-SCDMA OTA measurements	469

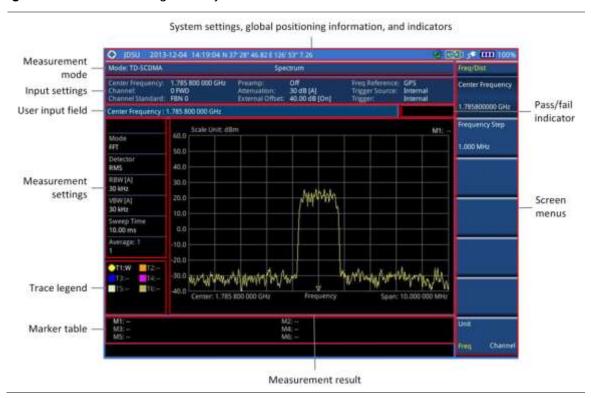
Introduction

The Time Division-Synchronous Code Division Multiple Access, also known as TD-SCDMA, is a 3G mobile telecommunications standard that is pursued by the Chinese Academy of Telecommunications Technology (CATT) in the People's Republic of China. The TD-SCDMA uses the TDD scheme while the WCDMA uses the FDD.

This TD-SCDMA Signal Analyzer can be used for testing of TD-SCDMA systems, made according to the following standard documentation.

- 3GPP TS 25.105 Base Station radio transmission and reception (TDD)
- 3GPP TS 25.142 Base Station conformance testing (TDD)
- 3GPP TS 25.222 Multiplexing and channel coding (TDD)
- 3GPP TS 25.223 Spreading and modulation (TDD)

The instrument automatically makes standard defined measurements using the measurement methods and limits as defined in the standard. The detailed results allow you to analyze TD-SCDMA/HSDPA system performance. You may alter the measurement parameters for specialized analysis. Pass/Fail testing with standard defined or user defined upper and lower limits and the Pass/Fail indictor help you to determine base station performance easily.


This instrument provides the following measurement tools for TD-SCDMA system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - Adjacent Channel Leakage power Ratio (ACLR)
 - Multi-ACLR
 - Spurious Emissions
- Power vs. Time:
 - Power vs. Time (Slot)
 - Power vs. Time (Frame)
 - Power vs. Time (Mask)
 - Timogram
- Modulation Analysis
 - Constellation
 - Midamble Power
 - Code Power
 - Code Error
- Auto Measure
- Over The Air (OTA)
 - Sync-DL ID Scanner
 - Sync-DL ID vs. Tau
 - Sync-DL ID Multipath
 - Sync-DL ID Analyzer
 - Route Map

Display overview

Figure 226 provides descriptions for each segment of the measurement screen.

Figure 226 TD-SCDMA signal analyzer measurement screen

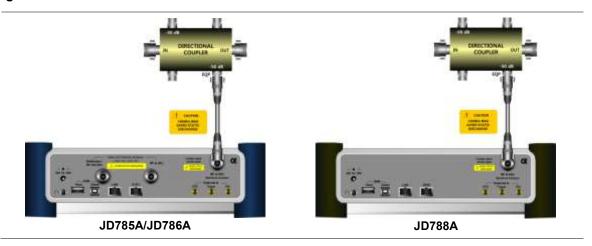

Connecting a cable

Direct connection

Procedure

1. Connect the **Spectrum Analyzer RF In** port of the JD780A series and the Power amplifier output port of BTS.

Figure 227 Direct connection

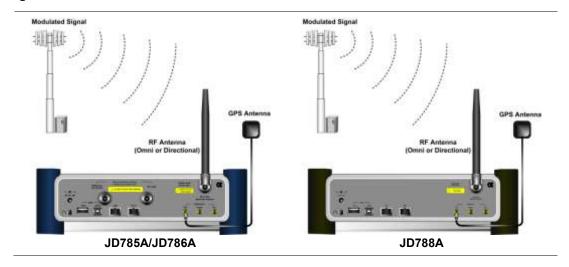


Indirect connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the monitor (test) port of BTS.

Figure 228 Indirect connection


CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

- Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD780A series.
- 2. Connect a GPS antenna to the GPS port of the JD780A series.

Figure 229 OTA connection

Λ

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Press the Signal Analyzer soft key.
- 3. Press the More (1/2) > TD-SCDMA soft key. The Spectrum mode is set by default.
- 4. Press the MEASURE hot key, and then select the measurement mode option from the following choices:
 - Spectrum
 - RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, ACLR, Multi-ACLR, or Spurious Emissions
 - Power vs Time > Power vs Time (Slot), Power vs Time (Frame),
 Power vs Time (Frame), or Timogram
 - Modulation Analysis > Constellation, Midamble Power, Code Power, or Code Error
 - Auto Measure
 - OTA > Sync-DL ID Scanner, Sync-DL ID vs Tau, Sync-DL ID Multipath, Sync-DL ID Analyzer, or Route Map

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Center Frequency soft key.
- **4.** Enter a value by using the numeric keys. You can also use the rotary knob.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a. Press the Frequency Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- 3. To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - b. Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - **c.** Press the **Select** soft key or the rotary knob to confirm the selection.
- 4. Press the Channel Number soft key.
- 5. Enter a value by using the numeric keys. You can also use the rotary knob.
- 6. Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a. Press the Channel Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

This frequency setting is not used in the Multi-ACLR and Spurious Emissions modes.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- 2. Press the Auto Scale soft key.

 Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the unit soft key or the ENTER hard key.

NOTE

In the measurements such as **Midamble Power**, **Code Power**, and **Code Error**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

- **3.** To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - **b.** Press the **Attenuation Value** soft key to set the level.
 - c. Enter a value between 0 and 55 in fives by using the numeric keys.
 - d. Press the dB soft key or the ENTER hard key.
- To couple the input attenuator's level with your reference level setting, select Attenuation
 Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- **3.** Enter a value between 1 and 20 by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

- 1. Press the AMP/SCALE hard key.
- **2.** Toggle the **Preamp** soft key and select **On** or **Off** as needed.

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select On.
- 3. Enter a value by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation in the spectrum and RF analysis. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.
- **3.** Enter a value between 1 and 100 as needed by using the numeric keys.
- 4. Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1. Press the SWEEP hot key.
- 2. Toggle the **Sweep Mode** soft key and select **Single**. You can also use the **HOLD** hot key. The letter **HOLD** in red appears and the sweeping is paused.
- 3. Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.

Procedure

- 1. Press the TRIGGER hot key.
- 2. Select the trigger source option from the following choices: Internal, External, or GPS.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD780A series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

Figure 230 Connection ports for external reference clock

- 1. Connect an external reference or a GPS antenna to the JD780A series.
- 2. Press the SYSTEM hot key.
- Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

Table 19 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.

GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- **3.** *Optional.* To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

NOT

The Delay setting is used only when there is a time offset in the signals to be measured.

Your measurement result is displayed on the screen as like the following example, Figure 231.

Figure 231 Spectrum measurement screen with TD-SCDMA signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the **Select Trace** soft key, and then select the trace number: **T1**, **T2**, **T3**, **T4**, **T5**, or **T6**. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- **3.** Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	М
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or the rotary knob.

- **4.** Optional. Press the **More (1/2) > Trace Info** soft key, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or **None** to hide the information display.
- 5. Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement determines the average power of an RF signal burst at or above a specified threshold value.

The purpose of the Channel Power measurement is to determine the power delivered to the antenna system on the RF channel under test. The instrument acquires a TD-SCDMA signal in the time domain. The average power level above the threshold is then computed and displayed.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- **3.** Optional. To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in μ s.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 232 Channel power measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 453 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you

can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- **3.** *Optional*. To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in μ s.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 233 Occupied bandwidth measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 453 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement required by 3GPP specifications encompasses different power limits and different measurement bandwidths (resolution bandwidths) at various frequency offsets. It may be expressed as a ratio of power spectral densities between the carrier and the specified offset frequency band. It provides useful figures-of-merit for the spectral re-growth and emissions produced by components and circuit blocks, without the rigor of performing a full SEM measurement.

The SEM measures spurious signal levels in up to five pairs of offset or region frequencies and relates

them to the carrier power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- **3.** To select the mask type according to the output power of the base station, complete the following steps:
 - a. Press the Mask Type soft key.
 - b. Select the mask type option: 26 dBm, 26 34 dBm, or 34 dBm -.
- **4.** *Optional*. To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 234 SEM measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 453 for more information.

ACLR

The Adjacent Channel Leakage power Ratio (ACLR) measures the amount of interference or power in an adjacent frequency channel according to the standards.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- **3.** Optional. To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 235 ACLR measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 453 for more information.

Multi-ACLR

The Multi-ACLR measurement is used to perform multi-channel ACLR measurements with as many

channels as possible. It helps you to measure ACLR in multi-channel transmitting Base Station environment.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the frequency, do one of the following:
 - To set the center frequency, complete the following steps:
 - a. Toggle the Unit soft key and select Freq.
 - **b.** Press the **Lowest Frequency** soft key to set the starting center frequency.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - d. Select the unit: GHz, MHz, kHz, or Hz.
 - e. Press the **Highest Frequency** soft key to set the stopping center frequency.
 - f. Enter a value by using the numeric keys. You can also use the rotary knob.
 - g. Select the unit: GHz, MHz, kHz, or Hz.
 - To set the channel number, complete the following steps:
 - a. Toggle the **Unit** soft key and select **Channel**.
 - **b.** To select the standard channel, press the **Channel Std** soft key and then select the band to be measured.
 - c. Press the Lowest Channel soft key to set the starting channel.
 - **d.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - e. Press the Enter soft key.
 - f. Press the **Highest Channel** soft key to set the stopping channel.
 - **g.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - h. Press the Enter soft key.

Measurement example

Figure 236 Multi-ACLR measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 453 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set up the range table and parameters, press the Range Table soft key and then complete the following steps:
 - **a.** Press the **Range** soft key, and then select the range number between **1** and **20** to add as a new or change the existing settings.
 - **b.** Do the following as desired:
 - Select Start Frequency, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.

- Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
- Select More (1/2) > RBW, and then specify a RBW value.
- Select More (1/2) > VBW, and then specify a VBW value.
- c. Press the PREV hard key.
- d. Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3. Toggle the Measure Type soft key between Examine and Full to select the measurement type.

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 4. To set the number of measurements to be averaged, complete the following steps:
 - a. Press the Average soft key.
 - b. Enter a value between 1 and 100.
 - c. Press the Enter soft key.
- 5. To move the highlighted bar in the result table to other range, complete the following steps:
 - a. Press the Range soft key in the Measure Setup menu bar.
 - b. Enter a value between 1 and 20.
 - c. Press the Enter soft key.

Measurement example

Figure 237 Spurious emissions measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 453 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you

desire.

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
ACLR	ACLR	(On/Off only)
Multi-ACLR	Multi-ACLR	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Conducting power vs. time measurements

The Power vs. Time (P vs T) measurement analyzes the amplitude profile and timing of the burst signal and provides a time mask for the signal. It measures the mean transmit power during the "useful part" of TD-SCDMA bursts and verifies that the power ramp fits within the defined mask. TD-SCDMA is a Time Division Multiple Access (TDMA) scheme with seven time slots, or bursts, per RF channel and by using the "Multi-Slot" function, up to seven slots in a frame can be viewed at one time.

Power vs. time (slot)

The Power vs. Time (Slot) in TD-SCDMA Signal Analyzer measures the modulation envelope in the time domain, showing the signal rise and fall shape of TD-SCDMA signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement. The measurement settings can be saved and recalled as a file.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- **4.** To set the number of maximum users, complete the following steps:
 - a. Press the Max Users soft key.

- **b.** Enter a value up to 16 by using the numeric keys.
- c. Press the Enter soft key.
- **5.** Optional. To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in μ s.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

- **6.** Optional. Press the **Miscellaneous** soft key, and then do the following(s) as needed:
 - To select how to determine scrambling estimation, toggle the **Scramble** soft key and select **Spec** or **Full**.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

 To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the Mid SF Map soft key and select Max or Spec.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

 To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM, or 64 QAM.

Measurement example

Figure 238 Power vs. time (slot) measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for power vs. time tests" on page 460 for more information.

Power vs. time (frame)

The Power vs. Time (Frame) measures the modulation envelope in the time domain, showing the power of each time slot of the TD-SCDMA signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- 4. To set the number of maximum users, complete the following steps:
 - a. Press the Max Users soft key.
 - **b.** Enter a value up to 16 by using the numeric keys.
 - c. Press the Enter soft key.
- **5.** *Optional*. To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - **c.** Press the μ s soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

- 6. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select how to determine scrambling estimation, toggle the Scramble soft key and select Spec or Full.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

 To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the Mid SF Map soft key and select Max or Spec.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

 To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM, or 64 QAM.

Measurement example

Figure 239 Power vs. time (frame) measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for power vs. time tests" on page 460 for more information. The On/Off Ratio is not used in the power vs. time (frame) tests.

Power vs. time (mask)

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- 3. Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- **4.** To set the number of maximum users, complete the following steps:
 - a. Press the Max Users soft key.
 - **b.** Enter a value up to 16 by using the numeric keys.
 - c. Press the Enter soft key.
- **5.** Optional. To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

- 6. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To select how to determine scrambling estimation, toggle the Scramble soft key and select Spec or Full.

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

 To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the Mid SF Map soft key and select Max or Spec.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

 To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM, or 64 QAM.

Measurement example

Figure 240 Power vs. time (mask) measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for power vs. time tests" on page 460 for more information. The DwPTS Power and UpPTS Power are not used in the power vs. time (mask) tests.

Timogram

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- Press the MEASURE SETUP hot key.
- Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- 3. To set the number of maximum users, complete the following steps:
 - a. Press the Max Users soft key.
 - **b.** Enter a value up to 16 by using the numeric keys.
 - c. Press the Enter soft key.
- 4. To set the time interval, complete the following steps:
 - a. Press the Time Interval soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
- **5.** To place the time cursor to analyze your measurements, complete the following steps:
 - a. Toggle the Time Cursor soft key between On and Off to enable or disable the time cursor.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

NOTE

When the time cursor is enabled, the measurement is put on hold and information about the time cursor is displayed.

- 6. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

 To select how to determine scrambling estimation, toggle the Scramble soft key and select Spec or Full.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

 To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the Mid SF Map soft key and select Max or Spec.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

 To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM, or 64 QAM.

Measurement example

Figure 241 Timogram with TD-SCDMA signal analyzer

Setting limit for power vs. time tests

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the PvsT Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Slot power	Slot Power	High Limit, Low Limit
Downlink pilot signal power	DwPTS Power	High Limit, Low Limit
Uplink pilot signal power	UpPTS Power	High Limit, Low Limit
Power between on and off portions of the downlink slots	On/Off Ratio	High Limit, Low Limit

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Conducting modulation measurements

TD-SCDMA receivers rely on the frequency or phase quality of the QPSK or 8PSK signal in order to achieve the expected carrier to noise performance. A transmitter with high frequency or phase error is often still able to support phone calls during a functional test. It displays the frequency errors numerically and graphically, showing the binary representation of the demodulated data bits of the received signal using Constellation, Midamble Power, Code Power, and Code Error screens.

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- Toggle the Scramble soft key and select Auto or Manual to set the scramble code automatically or manually.
- Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- 5. To set the number of maximum users, complete the following steps:
 - a. Press the Max Users soft key.
 - **b.** Enter a value up to 16 by using the numeric keys, and then press the **Enter** soft key.
- 6. Optional. Press the Miscellaneous soft key, and then do the following(s) as needed:
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

 To select how to determine scrambling estimation, toggle the Scramble soft key and select Spec or Full.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

 To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the Mid SF Map soft key and select Max or Spec.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

- To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM, or 64 QAM.
- To set the relative threshold, complete the following steps:
 - a. Press the Threshold soft key. Its default setting is -27 dB.
 - **b.** Enter a value between -50 and zero by using the numeric keys.
 - c. Press the Enter soft key.

Measurement example

Figure 242 Constellation measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 467 for more information. The Max Inactive is not used in the Constellation mode.

Midamble power

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- Press the MEASURE SETUP hot key.
- 2. Toggle the **Scramble** soft key and select **Auto** or **Manual** to set the scramble code automatically or manually.
- Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- $\textbf{5.} \quad \text{To set the number of maximum users, complete the following steps:} \\$
 - a. Press the Max Users soft key.
 - **b.** Enter a value up to 16 by using the numeric keys.
 - c. Press the Enter soft key.
- **6.** Optional. Press the **Miscellaneous** soft key, and then do the following(s) as needed:
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in μ s.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

c. Press the µs soft key.

NOTE

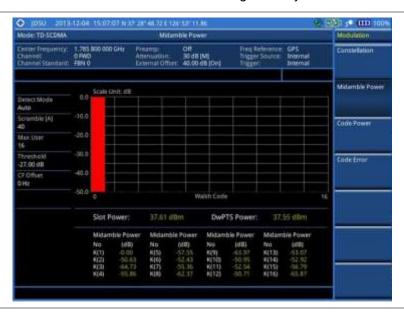
The Delay setting is used only when there is a time offset in the signals to be measured.

 To select how to determine scrambling estimation, toggle the **Scramble** soft key and select **Spec** or **Full**.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

 To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the Mid SF Map soft key and select Max or Spec.


NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

- To select the detect mode, press the Detect Mode soft key and then select the option: Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM, or 64 QAM.
- To set the relative threshold, complete the following steps:
 - a. Press the Threshold soft key. Its default setting is -27 dB.
 - b. Enter a value between -50 and zero by using the numeric keys.
 - c. Press the Enter soft key.

Measurement example

Figure 243 Midamble measurement with TD-SCDMA signal analyzer

Code power

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load

the file on to the instrument.

Procedure

- Press the MEASURE SETUP hot key.
- Toggle the Scramble soft key and select Auto or Manual to set the scramble code automatically or manually.
- Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- 5. To set the number of maximum users, complete the following steps:
 - a. Press the Max Users soft key.
 - **b.** Enter a value up to 16 by using the numeric keys.
 - c. Press the Enter soft key.
- **6.** Optional. Press the **Miscellaneous** soft key, and then do the following(s) as needed:
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

 To select how to determine scrambling estimation, toggle the Scramble soft key and select Spec or Full.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

 To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the Mid SF Map soft key and select Max or Spec.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

- To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM, or 64 QAM.
- To set the relative threshold, complete the following steps:
 - a. Press the **Threshold** soft key. Its default setting is -27 dB.
 - **b.** Enter a value between -50 and zero by using the numeric keys.
 - c. Press the Enter soft key.

Measurement example

Figure 244 Code power measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication for the Max Inactive. See "Setting limit for modulation tests" on page 467 for more information.

Code error

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- Toggle the Scramble soft key and select Auto or Manual to set the scramble code automatically or manually.
- Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
- Press the Spread Factor soft key, and then select the spread factor option: DL Auto for auto detection of downlink, UL Auto for auto detection of uplink, SF1, SF2, SF4, SF8, or SF16
- 5. To set the number of maximum users, complete the following steps:
 - a. Press the Max Users soft key.
 - **b.** Enter a value up to 16 by using the numeric keys.
 - **c.** Press the **Enter** soft key.
- **6.** Optional. Press the **Miscellaneous** soft key, and then do the following(s) as needed:
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - ${f c.}$ Press the ${f \mu s}$ soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

 To select how to determine scrambling estimation, toggle the Scramble soft key and select Spec or Full.

NOTE

The Spec searches "Sync Sequence Number" from 0 to 31 based on the TD-SCDMA specification and determines "Scrambling Code Number" by using the sync sequence number, while the Full does from 0 to 127 fully.

 To select how to determine the Midamble spread factor estimation either in full or maximum power search, toggle the Mid SF Map soft key and select Max or Spec.

NOTE

The Max determines the spread factor of the Midamble by using the maximum power of the received Midamble, while the Spec searches "Default Midamble Allocation" based on the TD-SCDMA specification.

- To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK/8PSK, QPSK, 8PSK, 16 QAM, or 64 QAM.
- To set the relative threshold, complete the following steps:
 - a. Press the Threshold soft key. Its default setting is -27 dB.
 - **b.** Enter a value between -50 and zero by using the numeric keys.
 - c. Press the Enter soft key.

Measurement example

Figure 245 Code error measurement with TD-SCDMA signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication for the Max Inactive. See "Setting limit for modulation tests" on page 467 for more information.

Setting limit for modulation tests

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the Modulation Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Frequency error	Frequency Error	High Limit Low Limit
Error vector magnitude rms	EVM RMS	High Limit
Peak code domain error	PCDE	High Limit
Highest level among inactive channels	Max Inactive	High Limit

- **4.** Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- **5.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Performing auto measurements

The Auto Measure function of the JD780A series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform tests on every aspect of all the carriers.

Setting limit

You can set test limits for test item(s) in the auto measurement.

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key, and then enable test limits as desired.
- 3. Press the PvsT Test Limits soft key, and then enable test limits as desired.
- 4. Press the Modulation Test Limits soft key, and then enable test limits as desired.
- 5. Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- **6.** Optional. Go to **SAVE/LOAD** > **Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load

the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Toggle the Configuration soft key and select the configuration option:
 - Current: to let the instrumnet use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.
 - Scenario: to run a test with a programmed scenario in JDViewer.
 The Scenario menu becomes activated.
- 3. To load a scenario, press the Scenario soft key, and then select a scenario file to load.
- **4.** Toggle the **Test Time** soft key and select the test time option:
 - Now: to let the instrument run a test only once.
 - Schedule: to let the instrument repeat tests as defined in the Set Timing.
 The Set Timing menu becomes activated.
- 5. To define a schedule for an auto measurement, complete the following steps:
 - a. Press the Set Timing soft key.
 - b. Press the Start Time (HH:MM) soft key.
 - c. Enter the time in the HH:MM format, and then press the Enter soft key.
 - d. Press the Stop Time (HH:MM) soft key.
 - e. Enter the time in the HH:MM format, and then press the Enter soft key.
 - f. Press the Time Interval soft key.
 - g. Enter the amount of time in minutes, and then press the **Enter** soft key.
- 7. Press the **Settings** soft key, and then set the following:
 - a. Press the Slot Number soft key, and then select the time slot number to be displayed: TS0, TS1, TS2, TS3, TS4, TS5, or TS6.
 - b. Toggle the External Offset soft key and select On.
 - c. Enter a value by using the numeric keys, and then press the dB soft key.
- **8.** To save your settings and results, go to **SAVE/LOAD > Save** and then perform functions as you desire. See "Using save" on page 33 for more information.
- Press the Run Test soft key to start to run a test.
 The Auto Measure Results window appears at the end of the test.
- 10. To stop running the test, press the Abort soft key.
- 11. To change the view on the screen during the test, press the **Display** and then select the view option from the following choices:
 - Screen: You can view each measurement screen as the test progresses.
 - Results: You can view a measurement result table as the test progresses.
 - Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

- 1. Toggle the **Display** soft key and select the display option:
 - Result: to view the result table.
 The Display Result menu becomes activated.
 - Settings: to view the measurement settings for the auto measurement.
- 2. Toggle the **Display Result** soft key and select the display result option:
 - Full: to view detailed measurement readings with the pass/fail indication.
 - Quick: to view only the Pass/Fail results.
- 3. To view the measurement results for a different carrier, press the **View Carrier** soft key and then select the carrier number to view.

Conducting TD-SCDMA OTA measurements

Sync-DL ID scanner

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- Toggle the Sync-DL ID soft key and select Auto or Manual to set the Sync Downlink ID automatically or manually.
- 3. Optional. To select the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - **b.** Press the **Delay** soft key to set the amount of delay in μs .
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - **d.** Press the μ**s** soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available
for your measurement mode. See "Using save" on page 33 for more information.

Figure 246 Sync-DL ID scanner measurement with TD-SCDMA OTA signal analyzer

Sync-DL ID vs. Tau

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- Toggle the Sync-DL ID soft key and select Auto or Manual to set the Sync Downlink ID automatically or manually.
- 3. Optional. To select the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - **b.** Press the **Delay** soft key to set the amount of delay in μ s.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - **d.** Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

4. Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 247 Sync-DL ID vs. Tau measurement with TD-SCDMA OTA signal analyzer

Sync-DL ID multipath

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- Toggle the Sync-DL ID soft key and select Auto or Manual to set the Sync Downlink ID automatically or manually.
- 3. Optional. To select the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - **b.** Press the **Delay** soft key to set the amount of delay in μ s.
 - c. Enter a value by using the numeric keys. You can also use the rotary knob.
 - **d.** Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

4. Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 248 Sync-DL ID multipath measurement with TD-SCDMA OTA signal analyzer

Sync-DL ID analyzer

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 440, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- Toggle the Sync-DL ID soft key and select Auto or Manual to set the Sync Downlink ID automatically or manually.
- 3. Optional. To select the delay, complete the following steps:
 - a. Press the Miscellaneous soft key.
 - **b.** Press the **Delay** soft key to set the amount of delay in μ s.
 - **c.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - **d.** Press the μs soft key.

The Delay setting is used only when there is a time offset in the signals to be measured.

4. Optional. Go to **SAVE/LOAD > Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Setting limit for Sync-DL ID analyzer

- 1. Press the LIMIT hot key.
- 2. To set the limit for rms of the error vector magnitude, complete the following steps:
 - a. Press the EVM RMS soft key.

- b. Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the limit.
- c. Press the High Limit soft key, and then enter a value for the upper threshold.
- d. Press the Enter soft key.
- 3. To set the limit for frequency error, complete the following steps:
 - a. Press the Frequency Error soft key.
 - b. Toggle the **Test Limits** soft key between **On** and **Off** to enable or disable the limit.
 - c. Press the **High Limit** soft key, and then enter a value for the upper threshold.
 - d. Press the ppm soft key.
 - e. Press the Low Limit soft key, and then enter a value for the lower threshold.
 - f. Press the ppm soft key.
- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- 5. Optional. Go to **SAVE/LOAD** > **Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Figure 249 Sync-DL ID analyzer measurement with TD-SCDMA OTA signal analyzer

Route map

The JD780A Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

Setting measure setup

- If required, connect a GPS receiver to your JD780A series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2. Configure test parameters as described in the "Configuring test parameters" on page 440.

- 3. To load your map file, complete the following steps:
 - a. Plug in your USB drive that has a floor map or .mcf file type created in JDMapCreator. . If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the Send to EQP menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- b. Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4. Press the MEASURE SETUP hot key.
- 5. Press the Plot Point soft key, and then select the plot point option from the following choices:
 - To collect data/plot points automatically as you move around in a vehicle or outside, press
 the GPS soft key and then toggle the Screen Mode soft key between Map and Full.

NOTE

With the **Map** setting, you can view only the collected points that can be seen within the boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

- To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.
- 6. Toggle the Plot soft key and select Start to start plotting.
- Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 8. Toggle the Plot soft key and select Stop to stop plotting.
- **9.** Press the **SAVE/LOAD** hot key to save the result. See "Using save" on page 33 for more information.

NOTE

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit for route map

You can set the thresholds for each test item.

- 1. Press the LIMIT hot key.
- 2. Press the **Excellent** soft key to set its threshold.
- 3. Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- Press the Very Good soft key to set its threshold.
- 5. Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.

- 6. Press the Good soft key to set its threshold.
- 7. Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 8. Press the Fair soft key to set its threshold.
- **9.** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 10. Press the Poor soft key to set its threshold.
- 11. Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- **12**. *Optional*. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Figure 250 Route map measurement with TD-SCDMA OTA signal analyzer

Mode: TD-SCOMA.

Route Map

Certify Frequency: 2.011 Bits site of the participation of the pa

2) Full view

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- 3. Do one of the following:
 - To zoom into an area of interest directly, complete the following steps:
 - **a.** Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
 - **b.** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to decrease and increase the selected area.
 - **c.** Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
 - **d.** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.
 - To zoom into the center or zoom out from the center, complete the following steps:
 - a. Toggle the **Zoom to** soft key and select **Center**.
 - b. Press the Zoom In and Zoom Out soft keys, as you need, to zoom in and zoom out.
 - **c.** Move the zoomed-in area by using the four arrow keys, as you need.

Using Mobile WiMAX Signal Analyzer

This chapter provides instructions for using the Mobile WiMAX Signal Analyzer function (option 026) with the Mobile WiMAX OTA Analyzer function (option 046). Topics discussed in this chapter are as follows:

	Introduction	478
=	Display overview	478
-	Connecting a cable	479
-	Selecting measurement mode	481
-	Configuring test parameters	481
	Conducting spectrum measurements	486
	Conducting RF measurements	488
-	Conducting power vs. time (frame) measurements	495
-	Conducting modulation measurements	497
	Performing auto measurements	505
	Performing power statistics CCDF measurements	506
	Conducting Mobile WiMAX OTA measurements	507

Introduction

The Mobile WiMAX Signal Analyzer performs power and spectrum measurements as well as modulation analysis to test the proper transmitter performance of Mobile WiMAX systems. It performs conformance testing according to the following standards providing a simple Pass/Fail indication on each test.

- IEEE 802.16e-2005
- WiBro (Korean Mobile WiMAX OFDMA Service)

This instrument provides the following measurement tools for Mobile WiMAX system:

- Spectrum Analysis
- RF Analysis
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - Spurious Emissions
- Power vs. Time (Frame)
- Modulation Analysis
 - Constellation
 - Spectral Flatness
 - EVM vs. Subcarrier
 - EVM vs. Symbol
- Auto Measure
- Power Statistics CCDF
- Over The Air (OTA)
 - Preamble Scanner
 - Multipath Profile
 - Preamble Power Trend
 - Route Map

Display overview

Figure 251 provides descriptions for each segment of the measurement screen.

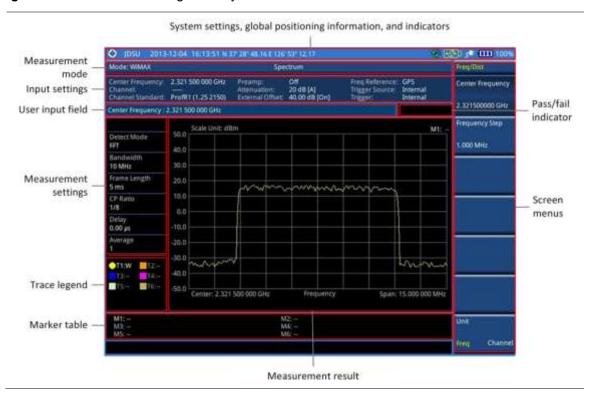
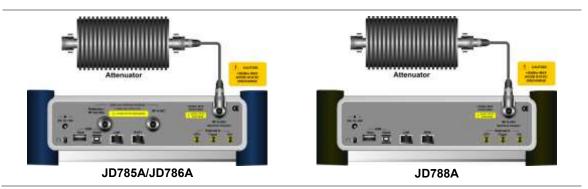


Figure 251 Mobile WiMAX signal analyzer measurement screen

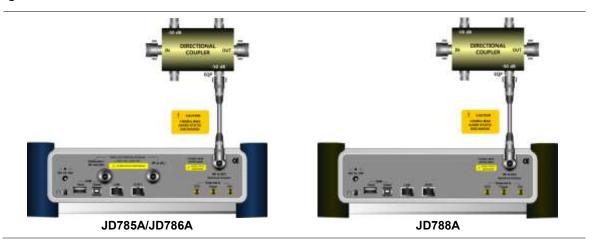

Connecting a cable

Direct connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the Power amplifier output port of BTS.

Figure 252 Direct connection



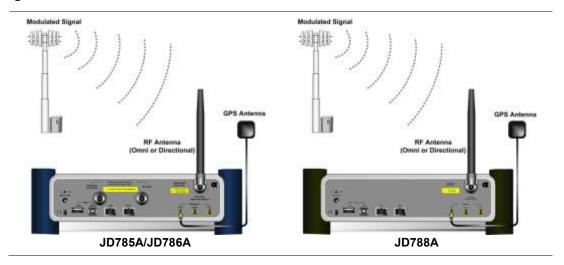
Indirect connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the monitor (test) port of BTS.

Figure 253 Indirect connection

CAUTION


The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

Procedure

- Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD780A series.
- 2. Connect a GPS antenna to the GPS port of the JD780A series.

Figure 254 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Press the Signal Analyzer soft key.
- 3. Press the More (1/2) > Mobile WiMAX soft key. The Spectrum mode is set by default.
- 4. Press the MEASURE hot key, and then select the measurement mode option from the following choices:
 - Spectrum
 - RF Analysis > Channel Power, Occupied BW, Spectrum Emission Mask, or Spurious Emissions
 - Power vs Time (Frame)
 - Modulation Analysis > Constellation, Spectral Flatness, EVM vs Subcarrier, or EVM vs. Symbol
 - Auto Measure
 - Power Statistics CCDF
 - OTA > Preamble Scanner, Multipath Profile, Preamble Power Trend, or Route Map

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Center Frequency soft key.
- **4.** Enter a value by using the numeric keys. You can also use the rotary knob.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a. Press the Frequency Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- 3. To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.

See "Appendix C – Band, frequency & channel standard" on page 628 for more information.

- b. Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
- c. Press the **Select** soft key or the rotary knob to confirm the selection.
- 4. Press the Channel Number soft key.
- 5. Enter a value by using the numeric keys. You can also use the rotary knob.
- 6. Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a. Press the Channel Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

NOTE

This frequency setting is not used in the Spurious Emissions mode.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- 2. Press the Auto Scale soft key.

 Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- **2.** To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the unit soft key or the ENTER hard key.

NOTE

In the measurements such as **Midamble Power**, **Code Power**, and **Code Error**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

- **3.** To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - b. Press the Attenuation Value soft key to set the level.
 - **c.** Enter a value between 0 and 55 in fives by using the numeric keys.
 - d. Press the dB soft key or the ENTER hard key.
- To couple the input attenuator's level with your reference level setting, select Attenuation
 Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- 3. Enter a value between 1 and 20 by using the numeric keys.
- **4.** Press the **dB** soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the **Preamp** soft key and select **On** or **Off** as needed.

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select On.
- 3. Enter a value by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.
- 3. Enter a value between 1 and 100 as needed by using the numeric keys.
- 4. Press the Enter soft key.

Setting trigger source

You can set the trigger source option for your measurements.

Procedure

- 1. Press the TRIGGER hot key.
- 2. Select the trigger source option from the following choices: Internal, External, or GPS.

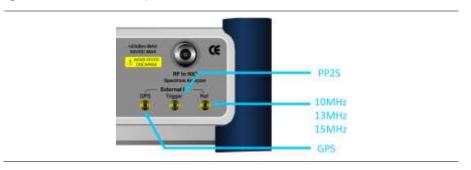
Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1. Press the SWEEP hot key.
- Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3. Optional. Press the Sweep Once soft key to get a new measurement.


To return to the continuous sweep mode:

 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD780A series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

Figure 255 Connection ports for external reference clock

- 1. Connect an external reference or a GPS antenna to the JD780A series.
- 2. Press the SYSTEM hot key.
- Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

 Table 20
 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.

GPS The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting spectrum measurements

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the **System Config** soft key, and then do the following:
 - **a.** Press the **Bandwidth** soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - **c.** Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d. Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - e. Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32
 - f. Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g. Enter a value by using the numeric keys, and then press the Enter soft key.
 - h. Press the **UL Symbols** soft key to set the number of uplink symbols.
 - i. Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3. Optional. To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

Your measurement result is displayed on the screen as like the following example, Figure 256.

Figure 256 Spectrum measurement screen with Mobile WiMAX signal analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the **Select Trace** soft key, and then select the trace number: **T1**, **T2**, **T3**, **T4**, **T5**, or **T6**. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3. Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	М
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or the rotary knob.

- **4.** Optional. Press the **More (1/2) > Trace Info** soft key, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or **None** to hide the information display.
- 5. Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting RF measurements

Channel power

The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

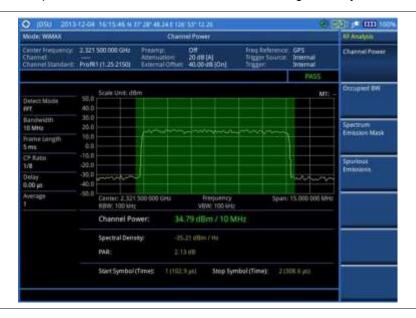
The channel power measurement identifies the total RF power, power spectral density (PSD) and peak to average ratio (PAR) of the signal in the Mobile WiMAX channel bandwidth.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement.

- 1. Press the MEASURE SETUP hot key.
- 2. Press the System Config soft key, and then do the following:
 - a. Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - c. Press the TTG (RTG) soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - **d.** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
 - f. Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g. Enter a value by using the numeric keys, and then press the Enter soft key.
 - h. Press the UL Symbols soft key to set the number of uplink symbols.
 - i. Enter a value by using the numeric keys, and then press the Enter soft key.
- 3. Optional. To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in μ s.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

c. Press the µs soft key.


NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

- 4. To set the start/stop symbols, complete the following steps:
 - a. Press the Start Symbol soft key.
 - **b.** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - c. Press the Stop Symbol soft key.
 - d. Enter a value by using the numeric keys, and then press the **Enter** soft key.

Measurement example

Figure 257 Channel power measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 494 for more information.

Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement.

- 1. Press the MEASURE SETUP hot key.
- 2. Press the **System Config** soft key, and then do the following:

- a. Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
- b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
- **c.** Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
- d. Enter a value by using the numeric keys, and then press the **Enter** soft key.
- e. Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
- f. Press the **DL Symbols** soft key to set the number of downlink symbols.
- **g.** Enter a value by using the numeric keys, and then press the **Enter** soft key.
- h. Press the **UL Symbols** soft key to set the number of uplink symbols.
- i. Enter a value by using the numeric keys, and then press the Enter soft key.
- 3. Optional. To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - b. Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

- 4. To set the start/stop symbols, complete the following steps:
 - a. Press the Start Symbol soft key.
 - b. Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - c. Press the Stop Symbol soft key.
 - d. Enter a value by using the numeric keys, and then press the **Enter** soft key.

Figure 258 Occupied bandwidth measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 494 for more information.

Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement compares the total power level within the defined carrier bandwidth and the given offset channels according to the standards.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the System Config soft key, and then do the following:
 - **a.** Press the **Bandwidth** soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - c. Press the **TTG** (**RTG**) soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d. Enter a value by using the numeric keys, and then press the Enter soft key.
 - e. Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or

1/32.

- f. Press the **DL Symbols** soft key to set the number of downlink symbols.
- g. Enter a value by using the numeric keys, and then press the Enter soft key.
- h. Press the **UL Symbols** soft key to set the number of uplink symbols.
- i. Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3. Optional. To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in μs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

- 4. To set the start/stop symbols, complete the following steps:
 - a. Press the Start Symbol soft key.
 - **b.** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - c. Press the Stop Symbol soft key.
 - d. Enter a value by using the numeric keys, and then press the **Enter** soft key.

Measurement example

Figure 259 SEM measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 494 for more information.

Spurious emissions

Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of

the Base Station.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement.

Procedure


- 1. Press the **MEASURE SETUP** hot key.
- To set up the range table and parameters, press the Range Table soft key and then complete the following steps:
 - a. Press the **Range** soft key, and then select the range number between **1** and **20** to add as a new or change the existing settings.
 - **b.** Do the following as desired:
 - Select Start Frequency, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.
 - Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
 - Select More (1/2) > RBW, and then specify a RBW value.
 - Select More (1/2) > VBW, and then specify a VBW value.
 - c. Press the PREV hard key.
 - d. Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3. Toggle the Measure Type soft key between Examine and Full to select the measurement type.

NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 4. To set the number of measurements to be averaged, complete the following steps:
 - a. Press the Average soft key.
 - **b.** Enter a value between **1** and **100**.
 - c. Press the Enter soft key.
- **5.** To move the highlighted bar in the result table to other range, complete the following steps:
 - a. Press the Range soft key in the Measure Setup menu bar.
 - b. Enter a value between 1 and 20.
 - c. Press the Enter soft key.

Figure 260 Spurious emissions measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 494 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you desire.

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings. See "Using save" on page 33 for more information.

Conducting power vs. time (frame) measurements

The Power vs. Time (Frame) measures the modulation envelope in the time domain, showing the power of each time slot in a Mobile WiMAX signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement. The measurement settings can be saved and recalled as a file.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the System Config soft key, and then do the following:
 - a. Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - **c.** Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d. Enter a value by using the numeric keys, and then press the Enter soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
 - f. Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g. Enter a value by using the numeric keys, and then press the Enter soft key.
 - h. Press the **UL Symbols** soft key to set the number of uplink symbols.
 - i. Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3. To set the start/stop symbols, complete the following steps:
 - a. Press the Start Symbol soft key.
 - b. Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - c. Press the Stop Symbol soft key.
 - d. Enter a value by using the numeric keys, and then press the Enter soft key.
- 4. Toggle the Preamble Index soft key and select the preamble search method: Auto or Manual.
- 5. Toggle the Search Type soft key and select Full or Window.
- 6. Toggle the Video Filter soft key and select On or Off to enable or disable the video filter.
- 7. Optional. Press the Miscellaneous soft key, and then do the following as needed:
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

 To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK, 16 QAM, or 64 QAM.

Setting limit for power vs. time tests

Procedure

- 1. Press the *LIMIT* hot key.
- 2. Press the PvsT Test Limits soft key.
- 3. Select the test item(s) and set the limit(s):

To set the limit for	Select	Set
Preamble power	Preamble Power	High Limit, Low Limit
Downlink burst power	DL Burst Power	High Limit, Low Limit
Uplink burst power	UL Burst Power	High Limit, Low Limit
Frame average power	Frame Average Power	High Limit, Low Limit
Time offset	Time Offset	High Limit, Low Limit
I/Q origin offset	IQ Origin Offset	High Limit

- 4. Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit. Toggle the **Beep** soft key between **On** and **Off** to enable or disable the beep sound.
- Optional. Go to SAVE/LOAD > Save, and then select Save Limit to save the limit settings.
 See "Using save" on page 33 for more information.

Measurement example

Figure 261 Power vs. time (frame) measurement with Mobile WiMAX signal analyzer

Conducting modulation measurements

Constellation

The Constellation is used to observe some aspects of modulation accuracy and can reveal certain fault mechanisms such as I/Q amplitude imbalance or quadrature imbalance. It displays constellation diagram by modulation types.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the System Config soft key, and then do the following:
 - a. Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - c. Press the TTG (RTG) soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d. Enter a value by using the numeric keys, and then press the Enter soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32
 - f. Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g. Enter a value by using the numeric keys, and then press the Enter soft key.
 - h. Press the **UL Symbols** soft key to set the number of uplink symbols.
 - i. Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3. To set the start/stop symbols, complete the following steps:
 - a. Press the Start/Stop Symbol soft key.
 - **b.** Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 4. Toggle the Preamble Index soft key and select the preamble search method: Auto or Manual.
- 5. Toggle the **Search Type** soft key and select **Full** or **Window**.
- 6. Optional. Press the Miscellaneous soft key, and then do the following as needed:
 - To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK, 16 QAM, or 64 QAM.
 - To select the downlink zone, press the **DL Zone** soft key and then select the permutation zone option: **Auto**, **PUSC** for partial usage of subcarrier channels, **FUSC** for full usage of subcarrier channels, or **AMC2X3** for adaptive modulation and coding.

NOTE

The permutation zone that is a number of contiguous OFDMA symbols in downlink that

use the same permutation. The DL subframe may contain more than one permutation zone. The maximum number of DL zone is 8 in one DL subframe.

- To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Measurement example

Figure 262 Constellation measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 504 for more information. The Spectral Flatness is not used in the Constellation mode.

Spectral flatness

The Spectral Flatness is used to measure the flatness energy of the constellation according to the WiMAX specification IEEE 802.16e.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- Press the MEASURE SETUP hot key.
- 2. Press the **System Config** soft key, and then do the following:
 - a. Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - **c.** Press the **TTG** (**RTG**) soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d. Enter a value by using the numeric keys, and then press the Enter soft key.
 - e. Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
 - f. Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g. Enter a value by using the numeric keys, and then press the Enter soft key.
 - h. Press the **UL Symbols** soft key to set the number of uplink symbols.
 - i. Enter a value by using the numeric keys, and then press the Enter soft key.
- 3. To set the start/stop symbols, complete the following steps:
 - a. Press the Start Symbol soft key.
 - **b.** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - c. Press the Stop Symbol soft key.
 - d. Enter a value by using the numeric keys, and then press the Enter soft key.
- 4. Toggle the Preamble Index soft key and select the preamble search method: Auto or Manual.
- 5. Toggle the Search Type soft key and select Full or Window.
- 6. Optional. Press the Miscellaneous soft key, and then do the following as needed:
 - To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK, 16 QAM, or 64 QAM.
 - To select the downlink zone, press the **DL Zone** soft key and then select the permutation zone option: **Auto**, **PUSC** for partial usage of subcarrier channels, **FUSC** for full usage of subcarrier channels, or **AMC2X3** for adaptive modulation and coding.

NOTE

The permutation zone, which is a number of contiguous OFDMA, symbols in downlink that use the same permutation. The DL subframe may contain more than one permutation zone. The maximum number of DL zone is 8 in one DL subframe.

- To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Figure 263 Spectral flatness measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication for the Spectral Flatness. See "Setting limit for modulation tests" on page 504 for more information.

EVM vs. subcarrier

The EVM vs Subcarrier shows the error vector magnitude representing the average constellation error of WIMAX OFDMA subcarriers.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the System Config soft key, and then do the following:
 - **a.** Press the **Bandwidth** soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - c. Press the TTG (RTG) soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.

- d. Enter a value by using the numeric keys, and then press the **Enter** soft key.
- e. Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
- f. Press the **DL Symbols** soft key to set the number of downlink symbols.
- **g.** Enter a value by using the numeric keys, and then press the **Enter** soft key.
- h. Press the UL Symbols soft key to set the number of uplink symbols.
- i. Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3. To set the start/stop symbols, complete the following steps:
 - a. Press the Start/Stop Symbol soft key.
 - **b.** Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 4. Toggle the Preamble Index soft key and select the preamble search method: Auto or Manual.
- 5. Toggle the Search Type soft key and select Full or Window.
- **6.** Optional. Press the **Miscellaneous** soft key, and then do the following as needed:
 - To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK, 16 QAM, or 64 QAM.
 - To select the downlink zone, press the DL Zone soft key and then select the permutation zone option: Auto, PUSC for partial usage of subcarrier channels, FUSC for full usage of subcarrier channels, or AMC2X3 for adaptive modulation and coding.

NOTE

The permutation zone, which is a number of contiguous OFDMA, symbols in downlink that use the same permutation. The DL subframe may contain more than one permutation zone. The maximum number of DL zone is 8 in one DL subframe.

- To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in μ s.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Figure 264 EVM vs. subcarrier measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 504 for more information. The Spectral Flatness and Frequency Error are not used in the EVM vs. Subcarrier mode.

EVM vs. symbol

The EVM vs Symbol is used to show the error vector magnitude representing the average constellation error of WiMAX OFDMA symbols.

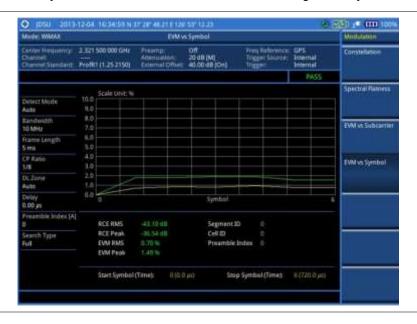
Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the MEASURE SETUP hot key.
- 2. Press the **System Config** soft key, and then do the following:
 - a. Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - **c.** Press the **TTG** (**RTG**) soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.

- d. Enter a value by using the numeric keys, and then press the **Enter** soft key.
- e. Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
- f. Press the **DL Symbols** soft key to set the number of downlink symbols.
- **g.** Enter a value by using the numeric keys, and then press the **Enter** soft key.
- h. Press the UL Symbols soft key to set the number of uplink symbols.
- i. Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3. To set the start/stop symbols, complete the following steps:
 - a. Press the Start/Stop Symbol soft key.
 - **b.** Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 4. Toggle the Preamble Index soft key and select the preamble search method: Auto or Manual.
- 5. Toggle the Search Type soft key and select Full or Window.
- **6.** Optional. Press the **Miscellaneous** soft key, and then do the following as needed:
 - To select the detect mode, press the **Detect Mode** soft key and then select the option: Auto, QPSK, 16 QAM, or 64 QAM.
 - To select the downlink zone, press the **DL Zone** soft key and then select the permutation zone option: **Auto**, **PUSC** for partial usage of subcarrier channels, **FUSC** for full usage of subcarrier channels, or **AMC2X3** for adaptive modulation and coding.

NOTE


The permutation zone, which is a number of contiguous OFDMA, symbols in downlink that use the same permutation. The DL subframe may contain more than one permutation zone. The maximum number of DL zone is 8 in one DL subframe.

- To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the μs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Figure 265 EVM vs. symbol measurement with Mobile WiMAX signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for modulation tests" on page 504 for more information. The Spectral Flatness and Frequency Error are not used in the EVM vs. Subcarrier mode.

Setting limit for modulation tests

- 1. Press the LIMIT hot key.
- 2. Press the Modulation Test Limits soft key to set the limits.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Spectral flatness	Spectral Flatness	On/Off
Frequency error	Frequency Error	High Limit Low Limit
RMS for RCE	RCE RMS	High Limit
Peak for RCE	RCE Peak	High Limit
RMS for error vector magnitude	EVM RMS	High Limit
Peak for error vector magnitude	EVM Peak	High Limit

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Performing auto measurements

The Auto Measure function of the JD780A series allows a complete signal profiling covering RF characterization and modulation quality parameters of up to 10 different carriers, particularly useful on an overlay architecture where base stations are transmitting in different frequencies.

The Auto Measure can be easily executed either by selecting a menu in the instrument or by running a programmed scenario in the PC-based application so that the instrument automatically configure and perform tests on every aspect of all the carriers.

Setting limit

You can set test limits for test item(s) in the auto measurement.

Procedure

- Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key, and then enable test limits as desired.
- 3. Press the PvsT Test Limits soft key, and then enable test limits as desired.
- 4. Press the Modulation Test Limits soft key, and then enable test limits as desired.
- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **6.** Optional. Go to **SAVE/LOAD** > **Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

- 1. Press the **MEASURE SETUP** hot key.
- 2. Toggle the Configuration soft key and select the configuration option:
 - Current: to let the instrumnet use current frequency (single carrier) and determine pass or fail based on the instrument's limit settings in Auto Measure.
 - Scenario: to run a test with a programmed scenario in JDViewer.
 The Scenario menu becomes activated.
- **3.** To load a scenario, press the **Scenario** soft key, and then select a scenario file to load.
- **4.** Toggle the **Test Time** soft key and select the test time option:
 - Now: to let the instrument run a test only once.
 - Schedule: to let the instrument repeat tests as defined in the Set Timing.
 The Set Timing menu becomes activated.
- **5.** To define a schedule for an auto measurement, complete the following steps:
 - a. Press the Set Timing soft key.
 - b. Press the Start Time (HH:MM) soft key.
 - c. Enter the time in the HH:MM format, and then press the Enter soft key.

- d. Press the Stop Time (HH:MM) soft key.
- e. Enter the time in the HH:MM format, and then press the Enter soft key.
- f. Press the Time Interval soft key.
- g. Enter the amount of time in minutes, and then press the Enter soft key.
- 7. Press the **Settings** soft key, and then set the following:
 - a. Press the Start Symbol soft key.
 - **b.** Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - c. Press the Stop Symbol soft key.
 - d. Enter a value by using the numeric keys, and then press the **Enter** soft key.
 - e. Toggle the External Offset soft key and select On or Off.
 - f. Enter a value by using the numeric keys, and then press the dB soft key.
- 8. To save your settings and results, go to **SAVE/LOAD** > **Save** and then perform functions as you desire. See "Using save" on page 33 for more information.
- **9.** Press the **Run Test** soft key to start to run a test. The Auto Measure Results window appears at the end of the test.
- 10. To stop running the test, press the **Abort** soft key.
- 11. To change the view on the screen during the test, press the **Display** and then select the view option from the following choices:
 - Screen: You can view each measurement screen as the test progresses.
 - Results: You can view a measurement result table as the test progresses.
 - Settings: You can view a measurement setting table as the test progresses.

Setting display

After completion of the auto measurement, the screen menu changes to Trace/Display so that you can view the results in different forms.

Procedure

- 1. Toggle the **Display** soft key and select the display option:
 - Result: to view the result table.
 The Display Result menu becomes activated.
 - **Settings**: to view the measurement settings for the auto measurement.
- 2. Toggle the **Display Result** soft key and select the display result option:
 - **Full**: to view detailed measurement readings with the pass/fail indication.
 - Quick: to view only the Pass/Fail results.
- **3.** To view the measurement results for a different carrier, press the **View Carrier** soft key and then select the carrier number to view.

Performing power statistics CCDF measurements

The Power Statistics Complementary Cumulative Distribution Function (CCDF) measurement characterizes the power statistics of the input signal. It provides PAR (Peak to Average power Ratio) versus different probabilities.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement. The measurement settings can be saved and recalled as a file. You can also use JDViewer, PC application software to configure a measure setup, save as a file, and load the file on to the instrument.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the CCDF Length soft key to set the length of the CCDF.
- 3. Enter a value between 1 and 100 by using the numeric keys. You can also use the rotary knob.
- 4. Press the Enter soft key.

Measurement example

Figure 266 CCDF measurement with Mobile WiMAX signal analyzer

Conducting Mobile WiMAX OTA measurements

This Over The Air (OTA) measurement has preamble scanner, multipath profile, and preamble power trend screens. Preamble scanner displays six preambles and relative powers to inform neighbor cells existence. The multipath profile graph helps the user to determine testing area's RF environmental condition. The preamble power trend shows power variations of selected preamble over time along with relative power trend for strongest preamble.

Preamble scanner

The OTA Preamble Scanner displays the six strongest preambles to inform neighbor cells existence of testing area. Preamble Index, Relative Power, Cell ID, and Sector ID are listed in for each preamble signal with Time Offset in us. Positioning information, latitude, and longitude will be displayed if a GPS antenna is supplied and locked to the GPS satellites on the bottom of the screen.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the **System Config** soft key, and then do the following:
 - a. Press the **Bandwidth** soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - c. Press the TTG (RTG) soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d. Enter a value by using the numeric keys, and then press the Enter soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32
 - f. Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g. Enter a value by using the numeric keys, and then press the Enter soft key.
 - h. Press the **UL Symbols** soft key to set the number of uplink symbols.
 - i. Enter a value by using the numeric keys, and then press the Enter soft key.
- 3. Optional. Press the Miscellaneous soft key, and then do the following as needed:
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available
for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 267 Preamble scanner measurement with Mobile WiMAX OTA signal analyzer

Multipath profile

The Multipath Profile enables the user to determine RF environmental conditions of testing area. It indicates the multipath power with time delay in us up to six.

The multipath profile is the result of portions of the original broadcast signal arriving at the receiving antenna out of phase. This can be caused by the signal being reflected off objects such as buildings, or being refracted through the atmosphere differently from the main signal.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement.

- 1. Press the MEASURE SETUP hot key.
- 2. Press the System Config soft key, and then do the following:
 - a. Press the Bandwidth soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - c. Press the **TTG (RTG)** soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d. Enter a value by using the numeric keys, and then press the Enter soft key.
 - Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32

- f. Press the **DL Symbols** soft key to set the number of downlink symbols.
- g. Enter a value by using the numeric keys, and then press the Enter soft key.
- h. Press the UL Symbols soft key to set the number of uplink symbols.
- i. Enter a value by using the numeric keys, and then press the **Enter** soft key.
- 3. Optional. Press the Miscellaneous soft key, and then do the following as needed:
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.

NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available
for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 268 Multipath profile measurement with Mobile WiMAX OTA signal analyzer

Preamble power trend

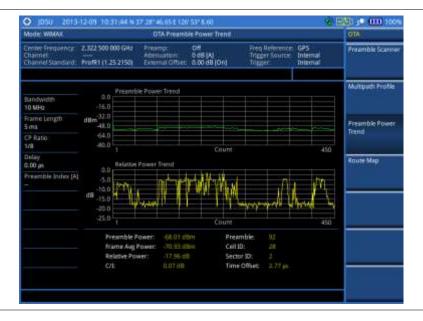
The Preamble Power Trend shows power variations of a strongest preamble signal over time along with the relative power trend compare to total preamble power. Searching preamble index can be set auto to detect strongest or manual to search specific preamble. Positioning information, latitude, and longitude will be displayed if a GPS antenna is supplied and locked to the GPS satellites on the bottom of the screen.

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 481, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the **System Config** soft key, and then do the following:
 - **a.** Press the **Bandwidth** soft key, and then select the nominal channel bandwidth to be measured from the following choices:
 - 7 MHz (8/7): Sets the channel bandwidth to 7 MHz with sampling factor 8/7. In conjunction with nominal channel bandwidth
 - 8.75 MHz (8/7): Sets the channel bandwidth to 8.75 MHz with sampling factor 8/7
 - 10 MHz (28/25): Sets the channel bandwidth to 10 MHz with sampling factor 28/25
 - b. Toggle the Frame Length soft key and select 5 ms or 10 ms.
 - **c.** Press the **TTG** (**RTG**) soft key to set the transmit/receive transition gap between the last sample of the downlink burst and the first sample of the subsequent uplink burst.
 - d. Enter a value by using the numeric keys, and then press the Enter soft key.
 - e. Press the CP Ratio soft key, and then select the cyclic prefix ratio option: 1/4, 1/8, 1/16, or 1/32.
 - f. Press the **DL Symbols** soft key to set the number of downlink symbols.
 - g. Enter a value by using the numeric keys, and then press the Enter soft key.
 - h. Press the **UL Symbols** soft key to set the number of uplink symbols.
 - i. Enter a value by using the numeric keys, and then press the Enter soft key.
- 3. Toggle the Preamble Index soft key and select the preamble search method: Auto or Manual.
- 4. Optional. Press the Miscellaneous soft key, and then do the following as needed:
 - To set the delay, complete the following steps:
 - a. Press the **Delay** soft key to set the amount of delay in µs.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the µs soft key.


NOTE

The Delay setting is used only when there is a time offset in the signals to be measured.

 Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 269 Preamble power trend with Mobile WiMAX OTA signal analyzer

Route map

The JD780A Series provides the Route Map function that allows you to collect data of points in an indoor or outdoor environment and track the received signals and coverage of RF transmitters by plotting data real time directly on top of a loaded floor plan or a map.

Setting measure setup

Procedure

- If required, connect a GPS receiver to your JD780A series for outdoor mapping. Indoor mapping does not necessarily need a GPS antenna.
- 2. Configure test parameters as described in the "Configuring test parameters" on page 481.
- 3. To load your map file, complete the following steps:
 - a. Plug in your USB drive that has a floor map or <code>.mcf</code> file type created in JDMapCreator. . If the JDMapCreator application on your computer is connected to the instrument via USB or LAN, you can send a map file with a single layer to the instrument directly by using the <code>Send to EQP</code> menu in JDMapCreator.

NOTE

The JDMapCreator converts and resizes any scanned floor plan or layout to fit onto your instrument's display. JDMapCreator 1.2.0 or later can save a multiple-layered map, providing **x1**, **x2**, and **x4** views, as a sizable map file so that you can zoom in and out after loading it.

- b. Press SAVE/LOAD hot key, and then select Load > Load Map. See "Using load" on page 36 for more information.
- 4. Press the **MEASURE SETUP** hot key.
- 5. Press the Plot Point soft key, and then select the plot point option from the following choices:
 - To collect data/plot points automatically as you move around in a vehicle or outside, press
 the GPS soft key and then toggle the Screen Mode soft key between Map and Full.

NOTE

With the Map setting, you can view only the collected points that can be seen within the

boundary of the loaded map. If a point is off the map, the instrument displays an arrow to indicate the direction of the current location on the map and the distance from the center to the location at the top of the screen.

With the **Full** setting, you can view all the collected points of the route without the loaded map.

- To collect data/plot points manually without a GPS antenna in an indoor environment, press the **Position** soft key.
- 6. Toggle the Plot soft key and select Start to start plotting.
- Touch directly on the screen or press the ENTER hard key to collect data and plot points on the loaded map for the Position setting.

NOTE

For the **Position** setting, you can change the direction of the route with the arrow keys and the distance with the rotary knob.

- 8. Toggle the Plot soft key and select Stop to stop plotting.
- Press the SAVE/LOAD hot key to save the result.
 See "Using save" on page 33 for more information.

The instrument does not automatically save the collected data. It is recommended that you save the result. Otherwise, you will lose all the collected data.

Setting limit for route map

You can set the thresholds for each test item.

- 1. Press the LIMIT hot key.
- 2. Press the Excellent soft key to set its threshold.
- 3. Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 4. Press the Very Good soft key to set its threshold.
- **5.** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 6. Press the Good soft key to set its threshold.
- 7. Enter a value, and then press the Enter soft key. You can also use the rotary knob.
- 8. Press the Fair soft key to set its threshold.
- **9.** Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- 10. Press the Poor soft key to set its threshold.
- 11. Enter a value, and then press the **Enter** soft key. You can also use the rotary knob.
- **12.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Measurement example

Figure 270 Route map measurement with Mobile WiMAX OTA signal analyzer

Controlling a map

If you have loaded a sizable map that was created in JDMapCreator 1.2.0 or later, you can use the Map Control feature that enables you to zoom into the map and view a specific area of interest in detail.

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Map Control soft key. This key is active only when you have loaded a sizable map.
- 3. Do one of the following:
 - To zoom into an area of interest directly, complete the following steps:
 - **a.** Toggle the **Zoom to** soft key and select **Area**. The black rectangle appears on the map.
 - b. Press the Zoom In and Zoom Out soft keys, as you need, to decrease and increase the selected area.
 - **c.** Move the rectangle by using the four arrow keys, as you need, to place it in a specific area of interest.
 - **d.** Press the center of the rotary knob to zoom into the selected area. You can also press the **Zoom to** soft key again to zoom into the selected area.
 - To zoom into the center or zoom out from the center, complete the following steps:
 - a. Toggle the Zoom to soft key and select Center.
 - **b.** Press the **Zoom In** and **Zoom Out** soft keys, as you need, to zoom in and zoom out.
 - **c.** Move the zoomed-in area by using the four arrow keys, as you need.

Using NB-IoT Signal Analyzer

This chapter provides instructions for using the NB-IoT Signal Analyzer with the NB-IoT Analyzer function (option 034). Topics discussed in this chapter are as follows:

Introduction	516
Selecting measurement mode	518
Configuring test parameters	519
Conducting NB-IoT in band spectrum measurement	523
Conducting NB-IoT in band modulation analysis	524
Conducting NB-IoT guard band spectrum measurement	526
Conducting NB-IoT guard band spectrum emission mask (SEM)	527
Conducting NB-IoT guard band modulation analysis	528
Conducting NB-IoT standalone RF measurements	529
Conducting NB-IoT standalone modulation analysis	534

Introduction

The JD700B series provide features to analyze the NB-IoT signal running with in band, guard band, and standalone. By implementing demodulation capability for NB-IoT, the JD700B series can be a 4.5G solution being deployed on top of the existing LTE network.

The NB-IoT Signal Analyzer consists of the following operation modes:

- In Band mode
- Guard Band mode
- Standalone mode

This instrument provides the following measurement tools for the NB-loT:

- Spectrum Analysis for In Band and Guard Band
- Modulation Analysis
- RF Analysis for Standalone
 - Channel Power
 - Occupied Bandwidth
 - Spectrum Emission Mask
 - ACLR
 - Spurious Emissions

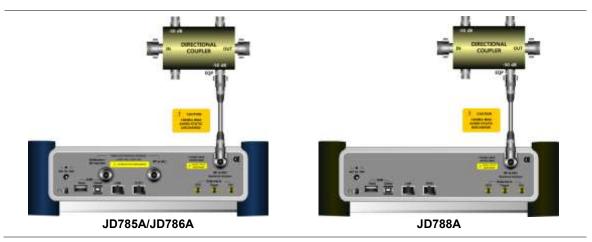
Connecting a cable

Direct connection

Procedure

1. Connect the **Spectrum Analyzer RF In** port of the JD780A series and the Power amplifier output port of BTS.

Figure 271 Direct connection



Indirect connection

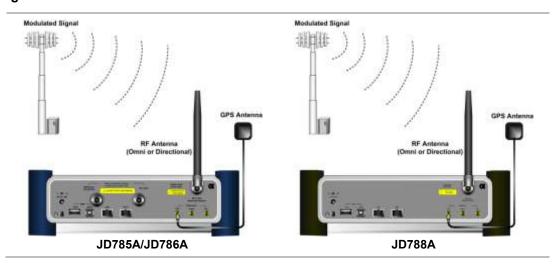
Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the monitor (test) port of BTS.

Figure 272 Indirect connection

À

CAUTION


The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

Procedure

- Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD780A series.
- 2. Connect a GPS antenna to the GPS port of the JD780A series.

Figure 273 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

- 1. Press the MODE hard key.
- 2. Press the Signal Analyzer soft key.
- 3. Press the More (1/2) > NB-IoT soft key. The Spectrum mode is set by default.
- 4. Press the MEASURE hot key for In Band mode, and then select the measurement mode option from the following choices:
 - Spectrum
 - Modulation Analysis
- **5.** Press the **MEASURE** hot key for **Guard Band** mode, and then select the measurement mode option from the following choices:
 - Spectrum
 - Spectrum Emission Mask
 - Modulation Analysis
- **6.** Press the **MEASURE** hot key for **Guard Band** mode, and then select the measurement mode option from the following choices:
 - Spectrum (Only shows spectrum, not available to use Measure Setup key)
 - RF Analysis > Channel Power > Occupied BW > Spectrum Emission Mask > ACLR >

Spurious Emissions

Modulation Analysis

Configuring test parameters

Setting frequency

You can set the frequency with either frequency or channel number. If a frequency to be set matches to the frequency corresponding to the selected channel standard, the instrument calculates its channel number and updates the screen with it automatically.

Procedure

To set the center frequency:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Center Frequency soft key.
- **4.** Enter a value by using the numeric keys. You can also use the rotary knob.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** Optional. To define the amount of frequency increment for the rotary knob, complete the following steps:
 - a. Press the Frequency Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the **Unit** soft key and select **Channel**.
- 3. To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears. See "Appendix C – Band, frequency & channel standard" on page 628 for more information.
 - Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - **c.** Press the **Select** soft key or the rotary knob to confirm the selection.
- 4. Press the Channel Number soft key.
- 5. Enter a value by using the numeric keys. You can also use the rotary knob.
- 6. Press the Enter soft key.

The instrument automatically displays the corresponding center frequency value for the selected channel number.

- 7. Optional. To define the amount of channel increment for the rotary knob, complete the following steps:
 - a. Press the Channel Step soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

NOTE

This frequency setting is not used in the Spurious Emissions mode.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- Press the Auto Scale soft key.
 Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the unit soft key or the ENTER hard key.

NOTE

In the measurements such as **Midamble Power**, **Code Power**, and **Code Error**, you may need to select the reference option between **Relative** and **Absolute** before setting the reference level.

- **3.** To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - **b.** Press the **Attenuation Value** soft key to set the level.
 - c. Enter a value between 0 and 55 in fives by using the numeric keys.
 - d. Press the dB soft key or the ENTER hard key.
- To couple the input attenuator's level with your reference level setting, select Attenuation
 Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W. The scale unit on the screen changes accordingly.

NOTE

This Units menu is available in the Spectrum and RF Analysis modes.

Scale per division

You can use the **Scale/Div** feature available for the spectrum and RF analysis. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- 3. Enter a value between 1 and 20 by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes.

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select On.
- 3. Enter a value by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.
- 3. Enter a value between 1 and 100 as needed by using the numeric keys.
- 4. Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

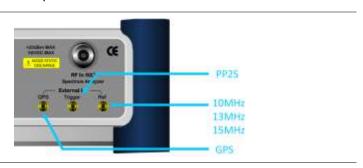
- 1. Press the **SWEEP** hot key.
- 2. Toggle the **Sweep Mode** soft key and select **Single**. You can also use the **HOLD** hot key. The letter **HOLD** in red appears and the sweeping is paused.
- 3. Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Setting trigger source

You can set the trigger source option for your measurements.


Procedure

- 1. Press the TRIGGER hot key.
- 2. Select the trigger source option from the following choices: Internal, External, or GPS.

Setting external clock

To enhance the reliability of modulation analysis measurements the JD780A series must be synchronized with a base station. When an external clock is not supplied, the instrument works with its built-in internal high-accuracy time base and some measurement results may exhibit inaccurate values. Therefore, it is highly recommended that you use the same reference clock as the signal source. You can use the *TRIGGER* hot key to set the external clock.

Figure 274 Connection ports for external reference clock

Procedure

- 1. Connect an external reference or a GPS antenna to the JD780A series.
- 2. Press the SYSTEM hot key.
- 3. Press the Freq Reference soft key, and then select the reference option: Internal, External 10 MHz, External 13 MHz, External 15 MHz, or GPS.

 Table 21
 External reference indicators

Туре	Indicator	Description
Internal	(green)	The green INT icon indicates that the instrument uses the built-in internal time base.
External	(green)	The green EXT icon indicates that an external reference is connected and locked and that the instrument uses the same reference clock as the signal source.
External	(red)	The red EXT icon indicates that an external reference is connect but not locked.
GPS	(green)	The green GPS antenna icon indicates that a GPS antenna is connected and locked.
GPS	(yellow)	The yellow GPS antenna icon indicates that a GPS antenna is connected and locking is in progress.
GPS	(grey)	The grey GPS antenna icon indicates that a GPS antenna is not connected, failed, or unable to be locked.

Conducting NB-IoT in band spectrum measurement

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 519, you can continue your measurement.

- 1. Press the MEASURE SETUP hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option from the following choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3. Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	M
Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or the rotary knob.

- **4.** Optional. Press the **More (1/2) > Trace Info** soft key, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or **None** to hide the information display.
- Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting NB-IoT in band modulation analysis

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 519, you can continue your measurement.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.

- Select the bandwidth option from the following choices: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the subframe number to be measured, complete the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value from 0 to 9 by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

NOTE

You can use **Subframe No** soft key only if you toggle the **Measure Type** soft key and select **Subframe**.

- 4. Press the NB-IoT PRB Index soft key.
- 5. Enter a value from 0 to 49 by using the numeric keys. You can also use the rotary knob.

The following is a table which defines PRB number values based on 3GPP standard. You can refer to the setting value.

LTE System Bandwidth	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
LTE PRB Indices for NB- IoT Syncronization	2, 12	2, 7, 17, 22	4, 9, 14, 19, 30, 35, 40, 45	2, 7, 17, 22, 27, 32, 42, 47, 52, 57, 62, 67, 72	4, 9, 14, 19, 24, 29, 34, 39, 44, 55, 60, 65, 70, 75, 80, 85, 90, 95

- 6. To measure the I-Q diagram by each channel shown on the screen, complete the following steps:
 - a. Press the MARKER hard key.
 - **b.** Toggle the **Marker View** soft key and select **On**.
 - **c.** Press the **Channel** and then turn the rotary knob.

Your measurement result is displayed on the screen as like the following examples. Note that the example measurement screens in this chapter consist of outdoor mode images or images with inverted colors for better visuality.

Figure 275 NB-IoT In Band Modualtion Analysis measurement screen (Frame)

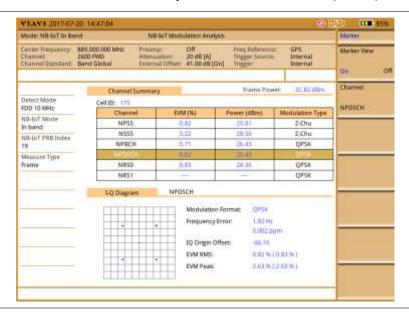



Figure 276 NB-IoT In Band Modualtion Analysis measurement screen (Subframe 5-NPSS)

Conducting NB-IoT guard band spectrum measurement

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 519, you can continue your measurement.

Procedure

- 1. Press the MEASURE SETUP hot key
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option from the choices: 5 MHz, 10 MHz, 15 MHz, or 20 MHz.

Setting trace

You can display up to six traces on the measurement chart simultaneously.

- Press the TRACE/DISPLAY hard key.
- Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6.
 The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- **3.** Do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Display the input signal's maximum response only (unlimited or for a certain amount of time)	Max Hold	М

Display the input signal's minimum response only (unlimited or for a certain amount of time)	Min Hold	m
Capture the selected trace and compare traces	Capture	С
Load a saved trace	More (1/2) > Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	More (1/2) > Trace Clear All	

NOTE

For the **Max Hold** and **Min Hold**, your instrument compares newly acquired data with the active trace and displays larger maximum values or smaller minimum values on the screen. You can set it to **Unlimited** to hold and view maximum or minimum data or specify a certain amount of time up to 60 seconds by using numeric keys or the rotary knob.

- **4.** Optional. Press the **More (1/2) > Trace Info** soft key, and then select the trace number to view the trace's parameter setting information stored at the time of the measurement or **None** to hide the information display.
- 5. Optional. If you have the two traces T1 and T2, you can perform trace math. To view the power difference between the traces, press the T1 T2 -> T5 or T2 T1 -> T6 soft key. The result is overlaid on the screen along with the second Y-axis.

Conducting NB-IoT guard band spectrum emission mask (SEM)

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 519, you can continue your measurement.

Procedure

- 1. Press the MEASURE SETUP hot key
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option from the choices: 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- 3. To select the mask type, complete the following steps:
 - a. Press the Mask Type soft key.
 - **b.** Select the mask type option, from the following choices:
 - Wide Area BS Category A
 - Wide Area BS Category B
 - Local Area BS

Your measurement result is displayed on the screen as like the following example.

g# CID 1009 Mode: NB-IsT Guard Band Emission Mask 40.0 30.0 20:5 10.0 VBW [A] 10:0 30.0 -50.0 Average: 1 Cerror: 889 006 000 MH Span: 50.000 000 MHz Bandwidth 10 MHz Reference Power: 45.81 dBm Cowner Peak Upper Peak Frequency Offset Bange 0,05 MHz - 5,05 MHz 5,05 MHz - 10,05 MHz 10,05 MHz - 20,00 MHz

Figure 277 Spectrum Emission Mask measurement screen

Conducting NB-IoT guard band modulation analysis

Setting measure setup

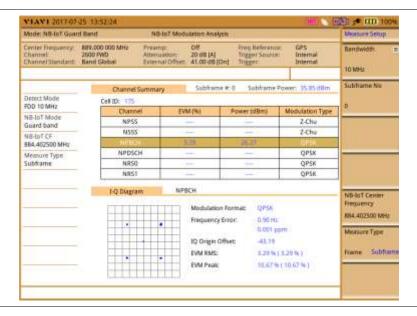
After configuring test parameters as described in the "Configuring test parameters" on page 519, you can continue your measurement.

Procedure

- 1. Press the MEASURE SETUP hot key
- 2. To set the nominal channel bandwidth to be measured, complete the following steps:
 - a. Press the Bandwidth soft key.
 - b. Select the bandwidth option from the choices: 5 MHz, 10 MHz, 15 MHz, or 20 MHz.
- **3.** To select the subframe number to be measured, complete the following steps:
 - Press the Subframe No soft key.
 - **b.** Enter a value from 0 to 9 by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

NOTE

You can use **Subframe No** soft key only if you toggle the **Measure Type** soft key and select **Subframe**.

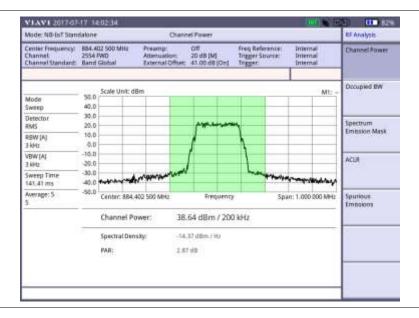

- 4. Press the NB-IoT Center Frequency soft key.
- 5. Enter a value using the numeric keys or rotate the rotary knob clockwise or counter clockwise.
- 6. To measure the I-Q diagram by each channel shown on the screen, complete the following steps:
 - a. Press the MARKER hard key.
 - b. Toggle the Marker View soft key and select On.
 - c. Press the Channel and then turn the rotary knob.

Your measurement result is displayed on the screen as like the following examples.

Figure 278 NB-IoT Guard Band Modualtion Analysis measurement screen (Frame)

Figure 279 NB-IoT Guard Band Modualtion Analysis measurement screen (Subframe 0-NPBCH)

Conducting NB-IoT standalone RF measurements


Channel power

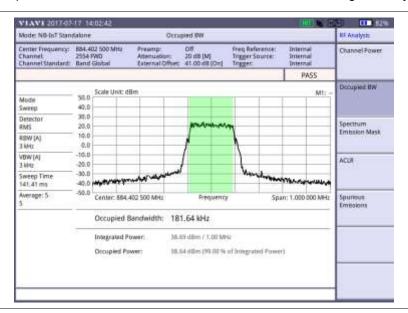
The Channel Power measurement is a common test used in the wireless industry to measure the total transmitted power of a radio within a defined frequency channel. It acquires a number of points representing the input signal in the time domain, transforms this information into the frequency domain using Fast Fourier Transform (FFT), and then calculates the channel power. The effective resolution bandwidth of the frequency domain trace is proportional to the number of points acquired for the FFT.

The channel power measurement identifies the total RF power, power spectral density (PSD) and peak to average ratio (PAR) of the signal in the NB-loT channel bandwidth.

Measurement example

Figure 280 Channel power measurement with NB-IoT Standalone signal analyzer

NOTE


You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 494 for more information.

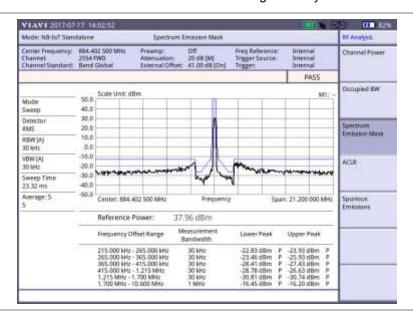
Occupied bandwidth

The Occupied Bandwidth measures the spectrum shape of the carrier. It is defined as the bandwidth, which includes 99% of the transmitted power among total transmitted power.

Measurement example

Figure 281 Occupied bandwidth measurement with NB-IoT Standalone signal analyzer

NOTE


You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 494 for more information.

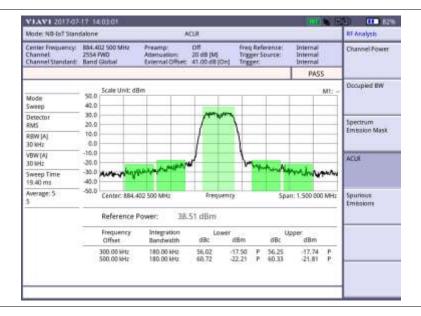
Spectrum emission mask (SEM)

The Spectrum Emission Mask (SEM) measurement compares the total power level within the defined carrier bandwidth and the given offset channels according to the standards.

Measurement example

Figure 282 SEM measurement with NB-IoT Standalone signal analyzer

NOTE


You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 494 for more information.

ACLR

The Adjacent Channel Leakage power Ratio (ACLR) measures the amount of interference or power in an adjacent frequency channel according to the standards.

Measurement example

Figure 283 ACLR measurement with NB-IoT Standalond signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 494 for more information.

Spurious emissions

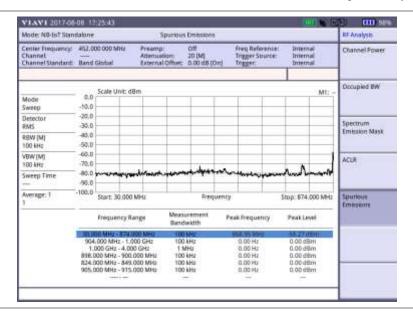
Out-of-band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. The Spurious Emissions measurement is to identify and determine the power level of out-of-band spurious emission within the necessary channel bandwidth and modulated signal measured at the RF port of the Base Station

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 519, you can continue your measurement.

- 1. Press the **MEASURE SETUP** hot key.
- 2. To set up the range table and parameters, press the **Range Table** soft key and then complete the following steps:
 - **a.** Press the **Range** soft key, and then select the range number between **1** and **20** to add as a new or change the existing settings.
 - **b.** Do the following as desired:
 - Select Start Frequency, and then specify the start frequency for the selected range.
 - Select Stop Frequency, and then specify the stop frequency for the selected range.
 - Select Start Limit, and then specify the lower limit for Pass/Fail indication.
 - Select Stop Limit, and then specify the upper limit for Pass/Fail indication.

- Select More (1/2) > Attenuation, and then specify an value in the multiple of five.
- Select More (1/2) > RBW, and then specify a RBW value.
- Select More (1/2) > VBW, and then specify a VBW value.
- c. Press the PREV hard key.
- d. Toggle the Range soft key and select On to display the selected range in the result table or Off to hide it from the table.
- 3. Toggle the Measure Type soft key between Examine and Full to select the measurement type.


NOTE

The **Examine** mode displays only the selected range while the **Full** mode lets the instrument automatically changes the selected range from one another.

- 4. To set the number of measurements to be averaged, complete the following steps:
 - a. Press the Average soft key.
 - b. Enter a value between 1 and 100.
 - c. Press the Enter soft key.
- 5. To move the highlighted bar in the result table to other range, complete the following steps:
 - a. Press the Range soft key in the Measure Setup menu bar.
 - b. Enter a value between 1 and 20.
 - c. Press the Enter soft key.

Measurement example

Figure 284 Spurious emissions measurement with NB-IoT Standalone signal analyzer

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for RF tests" on page 494 for more information.

Setting limit for RF tests

By default, test limits specified in the standard are set for you. You can change thresholds if you

desire.

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the RF Test Limits soft key.
- 3. Select the test item(s) and set the limit(s) depending on your selected measurement mode:

To set the limit for	Select	Set
Channel power	Channel Power	High Limit Low Limit
Occupied bandwidth	Occupied BW	High Limit
Spectrum emission mask	Spectrum Emission Mask	(On/Off only)
Spurious emissions	Spurious Emissions	(On/Off only)

- Optional. You can enable alarm sound that goes off if the measurement falls outside of the limit.
 Toggle the Beep soft key between On and Off to enable or disable the beep sound.
- **5.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Conducting NB-IoT standalone modulation analysis

Setting measure setup

After configuring test parameters as described in the "Configuring test parameters" on page 519, you can continue your measurement.

Procedure

- 1. Press the **MEASURE SETUP** hot key
- 2. Toggle the Measure Type soft key and select Frame or Subframe.

NOTE

You can use **Subframe No** soft key only if you toggle the **Measure Type** soft key and select **Subframe**.

- 3. To select Subframe No do the following steps:
 - a. Press the Subframe No soft key.
 - **b.** Enter a value from 0 to 9 by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 4. To measure the I-Q diagram by each channel shown on the screen, complete the following steps:
 - a. Press the MARKER hard key.
 - **b.** Toggle the **Marker View** soft key and select **On**.
 - c. Press the Channel and then turn the rotary knob.

Your measurement result is displayed on the screen as like the following examples.

Measurement example

Figure 285 NB-IoT Standalone Modualtion Analysis measurement screen (Frame)

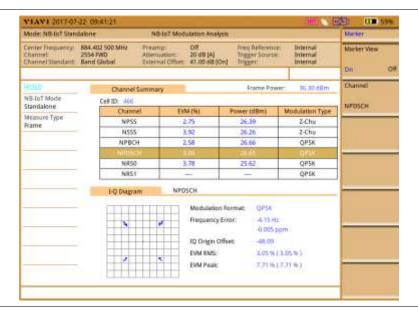



Figure 286 NB-IoT Standalone Modualtion Analysis measurement screen (Subframe 0- NPBCH)

Using Cable and Antenna Analyzer

This chapter provides instructions for using the Cable and Antenna Analyzer function, which is available for the JD785A Base Station Analyzer and the JD786A RF Analyzer. Topics discussed in this chapter are as follows:

	Introduction	537
	Display overview	537
	Selecting measurement mode	538
	Configuring test parameters	538
	Performing calibration	540
	Connecting a cable	546
	Performing reflection measurements	548
	Performing DTF measurements	549
	Performing reflection-DTF measurements	552
	Performing cable loss (1 port) measurements	553
	Performing 1-port phase measurements	555
	Performing Smith chart measurements	557
	Performing 2-port vector measurements	558
-	Performing 2-port scalar measurements	559
	Analyzing measurements	560

Introduction

The Cable and Antenna Analyzer is a diagnostic tool needed to accurately detect operational problems by performing cable and antenna measurements to verify the base station's infrastructure, including feed lines, connectors, antennas, cables, jumpers, amplifiers, and filters. The JD785A Base Station Analyzer and the JD786A RF Analyzer have all of the measurement functions necessary to verify cable and antenna systems from Voltage Standing Wave Ratio (VSWR) to power measurements. In addition, the JD785A and the JD786A make distance-to-fault measurements to pinpoint a faulty location accurately.

To get maximum power into a load it is required that the load impedance match the generator impedance. Any difference in impedance or mismatching would not produce maximum power transfer. An impedance mismatch at the antenna system produces a reflective 'traveling wave', which goes in the opposite direction from the incident wave. As the two traveling waves cross each other in opposite direction, it is produce an interference pattern called a "standing wave". VSWR is the ratio between the power sent forward to the cable and/or antenna and the amount of power that is reflected back to the transmitter.

Some of the consequences of having a high VSWR condition in cellular services include dropped calls, poor reception, and an overall unacceptable performance in the cell (or section of cell) covered by the base station antenna. Therefore, the VSWR of the antenna system including the feed line is one of the most critical factors in the service and maintenance of the RF transmitter systems.

This Cable and Antenna Analyzer function performs following measurements:

- Reflection: VSWR and Return Loss
- Distance to Fault (DTF): VSWR and Return Loss
- Reflection-DTF (dual measurement)
- 2 Port Measurements: Vector and Scalar (Optional)
- Cable Loss (1 Port)
- 1 Port Phase
- Smith Chart

Display overview

Figure 287 provides descriptions for each segment of the measurement screen.

System settings, global positioning information, and indicators Measurement Reflection - Return Las mode Input settings Pass/fail User input field indicator 0.00 6.00 DTF (V5WR) 8.00 Measurement 4.00 Screen settings 0.00 menus (Return Loss) 6.00 2.00 Cable Loss (1 Port) 0.00 Trace legend .972 000 000 GHz / -28.21 dB More (1/2) Marker table Measurement result

Figure 287 Reflection measurement screen

Selecting measurement mode

Procedure

- 1. Press the **MODE** hard key.
- Press the Cable & Antenna Analyzer soft key. The Reflection (VSWR) mode is selected by default.
- 3. To change the mode, press the **MEASURE** hot key and then select the measurement mode:
 - Reflection (Return Loss)
 - DTF (VSWR)
 - DTF (Return Loss)
 - Reflection-DTF
 - Cable Loss (1 Port)
 - 1 Port Phase, Smith Chart
 - 2 Port Measurement (Vector/Scalar)

Configuring test parameters

Setting frequency

You can set frequencies manually using the Start Frequency/Stop Frequency or Center Frequency/Span. You can also select from the band list stored in the instrument. It is recommended to set the frequency to a value that covers the normal range of the measurement with enough margins.

Procedure

To set the start and stop frequencies:

- 1. Press the FREQ/DIST hard key.
- 2. Press the Start Frequency soft key.
- 3. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 4. Select the unit: GHz, MHz, kHz, or Hz.
- 5. Press the Stop Frequency soft key.
- 6. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 7. Select the unit: GHz, MHz, kHz, or Hz.

To set the center frequency and span:

- 1. Press the FREQ/DIST hard key.
- 2. Press the Center Frequency soft key.
- **3.** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 4. Select the unit: GHz, MHz, kHz, or Hz.
- 5. Press the Span soft key.
- 6. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 7. Select the unit: GHz, MHz, kHz, or Hz.

To select the band from the band list:

- 1. Press the FREQ/DIST hard key.
- 2. Press the **Band List** soft key, and then select **Standard Band** or **Custom Band**. The band list window appears.
- 3. Select a frequency band from the list, and then press the **Select** soft key. The start and stop frequency information on the screen changes according to your choice.

Setting distance

In the DTF measurement mode, you need to set the start and stop distances. The maximum measurable distance is displayed on the left side of the screen depending on the frequency setting. You can set any distance within the maximum measurable distance. Optimum resolution is achieved when the user setting distance is the same as the maximum measurable distance

- 1. Press the FREQ/DIST hard key.
- 2. Press the Start Distance soft key.
- 3. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 4. Select the Enter soft key.
- 5. Press the Stop Frequency soft key.
- 6. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- Select the Enter soft key.

Adjusting scale

You can adjust the Y-axis scale to optimize the display of measurement trace(s). Adjusting scale does not affect the calibration state.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Do one of the following choices:
 - Press the Auto Scale to optimize the display of the measured trace by letting the
 instrument set the minimum and maximum values for the Y-axis automatically.
 Each time this key is pressed, the top and bottom scales are set to the minimum and
 maximum values with margin on the Y-axis of the chart.
 - Press the Full Scale to restore the insturment's default amplitude range for the Y-scale automatically.
 - To set the minimum and maximum values for the Y-axis manually, complete the following steps:
 - a. Press the Maximum (Top) soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.
 - d. Press the Minimum (Top) soft key.
 - e. Enter a value by using the numeric keys.
 - f. Press the Enter soft key.

This setting is not used in the Smith Chart measurement mode.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1. Press the SWEEP hot key.
- **2.** Toggle the **Sweep Mode** soft key and select **Single**. You can also use the **HOLD** hot key. The letter **HOLD** in red appears and the sweeping is paused.
- **3.** Optional. Press the **Sweep Once** soft key to get a new measurement.

To return to the continuous sweep mode:

 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

Performing calibration

To get reliable and accurate measurement results, you must perform a calibration on your instrument after setting frequencies and prior to making a measurement. To perform the calibration, you need to have the following ready:

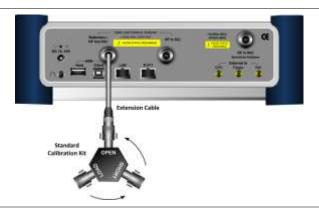
- Calibration accessories (optional).
- Mechanical Y-Cal kit or electronic EZ-Cal kit
- Phase-stabilized test cable

1-port calibration

Measurement modes that need the 1-port calibration are Reflection, DTF, Cable Loss, 1 Port Phase, and Smith Chart.

It is recommended that you perform an O-S-L calibration right at the Reflection/RF Out port of the instrument without using an extension cable in order to minimize a measurement error. If using an extension cable is inevitable, you need to use a phase stable cable and perform the O-S-L calibration at the open end of the extension cable.

NOTE


If the O-S-L calibration is done at the end of the port extension cable for DTF measurement, the length of the port extension cable is compensated automatically and is not included in the distance to the point of discontinuity.

Bending or moving the extension cable while making a measurement may cause errors in the measurement.

O-S-L calibration using mechanical Y-Cal kit

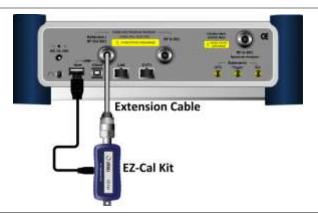
Figure 288 illustrates the connection when a port extension cable is used for calibration.

Figure 288 1-port calibration connection with mechanical Y-Cal kit

Procedure

- 1. Press the MEASURE SETUP hot key.
- **2.** Press the **Calibrate** soft key. The on-screen instruction for the calibration appears.
- Connect the OPEN connector of the CAL Kit directly to the Cable and Antenna Analyzer Reflection/RF Out port or at the end of the connected extension cable.
- **4.** Press the **Continue** soft key to start calibration. The calibration progress bar appears.
- 5. Connect the SHORT connector of the CAL Kit directly to the Cable and Antenna Analyzer Reflection/RF Out port or at the end of the connected extension cable.
- **6.** Press the **Continue** soft key to continue calibration.

The calibration progress bar appears.


- Connect the LOAD connector of the CAL Kit directly to the Cable and Antenna Analyzer Reflection/RF Out port or at the end of the connected extension cable.
- 8. Press the Continue soft key to continue calibration. The calibration progress bar appears. After completion, the calibration status on the screen changes to ON.

O-S-L calibration using electronic EZ-Cal kit

The e-Calibration is an Open-Short-Load calibration using the electronic EZ-Cal kit, which lets you perform the O-S-L calibration easy and fast with only one connection of the kit to the instrument.

The O-S-L calibration must be performed after setting the frequencies and connecting an extension cable as like any mechanical calibration. **Figure 289** illustrates the connection when a port extension cable is used for calibration.

Figure 289 1-port calibration connection with electronic EZ-Cal kit

Procedure

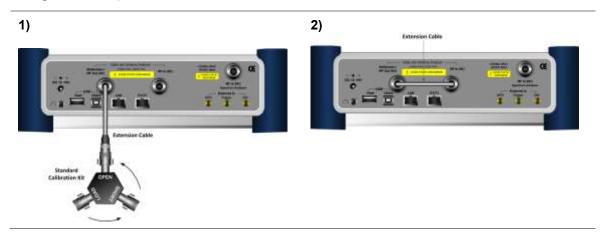
- 1. Connect an extension cable, if necessary, to the **Reflection/RF Out** port of the instrument.
- Connect your EZ-Cal to the other open end of the extension cable or to your instrument's Reflection/RF Out port directly.
- Connect the USB cable to the side of the EZ-Cal and then to the USB Host port to power the e-calibration kit
 - The instrument detects the EZ-Cal automatically and displays the EZ-Cal icon.
- 4. Press the MEASURE SETUP hot key.
- 5. Press the Calibrate soft kev.
 - The on-screen instruction appears. to guide you through the e-calibration.
- 6. Press the Continue soft key to continue calibration. The calibration progress bar appears. After completion, the calibration status on the screen changes to ON (E).
- 7. Make sure to disconnect the EZ-Cal kit including its USB connection.

Quick calibration in DTF

The Quick calibration that is available only in the DTF measurement mode is useful when you want to measure the cable length only, without having to perform a full O-S-L calibration with a mechanical Y-Cal kit.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the Calibrate soft key.
- Connect the OPEN connector of your mechanical Y-Cal kit directly to the Reflection/RF Out port or at the end of the connected extension cable.
- Press the Quick Cal. soft key to start the quick calibration.
 The calibration status on the screen appears.
 After completion, the calibration status on the screen changes to ON (Q).


2-port calibration

Measurement modes that need the 2-port calibration are 2 Port Vector and Scalar measurements and 2 Port Phase. You must perform 2-port calibration before making a measurement.

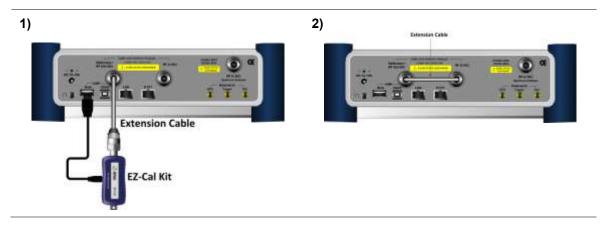
O-S-L-Thru calibration using mechanical Y-Cal kit for vector measurements

Figure 290 illustrates the connection using the Y-Cal kit for calibration in Vector measurements.

Figure 290 2-port calibration connection with Y-Cal in vector measurements

Procedure

- 1. Press the MEASURE SETUP hot key.
- Press the Calibrate soft key. The on-screen instruction for the calibration appears.
- 3. Connect the OPEN connector of the CAL Kit directly to the Cable and Antenna Analyzer Reflection/RF Out port or at the end of the connected test cable as illustrated in Figure 290-1.
- Press the Continue soft key to start calibration. The calibration progress bar appears.
- Connect the SHORT connector of the CAL Kit directly to the Cable and Antenna Analyzer Reflection/RF Out port or at the end of the connected test cable.
- **6.** Press the **Continue** soft key to continue calibration. The calibration progress bar appears.
- Connect the LOAD connector of the CAL Kit directly to the Cable and Antenna Analyzer Reflection/RF Out port or at the end of the connected test cable.
- Press the Continue soft key to continue calibration. The calibration progress bar appears.
- 9. Connect the Reflection/RF Out port and the RF In port for the Cable and Antenna Analyzer

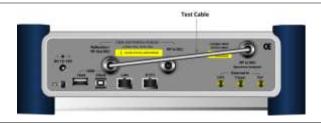

with the test cable and the proper adapter as illustrated in Figure 290-2.

Press the Continue soft key to continue calibration.
 The calibration progress bar appears.
 After completion, the calibration status on the screen changes to ON.

O-S-L-Thru calibration using electronic EZ-Cal kit for vector measurements

Figure 291 illustrates the connection using the EZ-Cal kit for calibration in Vector measurements.

Figure 291 2-port calibration connection with EZ-Cal in vector measurements


Procedure

- 1. Connect an extension cable, if necessary, to the Reflection/RF Out port of the instrument.
- Connect your EZ-Cal to the other open end of the extension cable or to your instrument's Reflection/RF Out port directly.
- 3. Connect the USB cable to the side of the **EZ-Cal** and then to the **USB Host** port to power the e-calibration kit as illustrated in **Figure 291-1**.
 - The instrument detects the EZ-Cal automatically and displays the EZ-Cal icon.
- 4. Press the **MEASURE SETUP** hot key.
- Press the Calibrate soft key.
 The on-screen instruction appears to guide you through the e-calibration.
- When the O-S-L calibration is done, make sure to disconnect the EZ-Cal kit including its USB connection.
- 7. Connect the **Reflection/RF Out** port and the **RF In** port for the Cable and Antenna Analyzer with the test cable and the proper adapter as illustrated in **Figure 291-2**.
- Press the Continue soft key to continue calibration.
 The calibration progress bar appears.
 After completion, the calibration status on the screen changes to ON.

Scalar measurement

Figure 292 illustrates the connection for calibration in Scalar measurements.

Figure 292 2-port calibration connection in Scalar measurements

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- **2.** Press the **Calibrate** soft key. The on-screen instruction for the calibration appears.
- 3. Connect the Reflection/RF Out port for the Cable and Antenna Analyzer and the RF In port for the Spectrum Analyzer with a test cable as illustrated in Figure 292.
- 4. Press the Continue soft key to continue calibration. The calibration progress bar appears. After completion, the calibration status on the screen changes to ON.

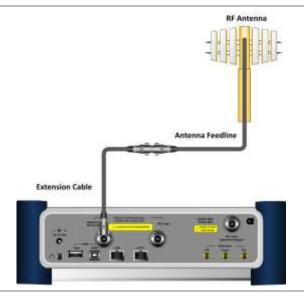
Calibration status indicators

The instrument displays calibration status that is an important indicator to get reliable and accurate measurement results from CAA testing. The calibration status includes ON, ON (E), ON (I), ON (Q), OFF (T), and OFF.

 Table 22
 Calibration status indicators

Indicator(s)	Description
ON	Indicates that a mechanical O-S-L calibration is performed using a Y-Cal kit and the instrument is ready to make a measurement.
ON (E)	Indicates that an electronic O-S-L calibration or e-calibration is performed using Viavi's EZ-Cal kit and the instrument is ready to make a measurement.
ON (I)	Indicates that the frequency setting is changed within the frequency range registered for the O-S-L calibration and so the calibration is still valid. When the calibration status changes from ON to ON (I), re-calibration is not necessarily required.
ON (Q)	Indicates that quick calibration (Quick Cal) is performed. It is useful only if cable length measurement is needed.
OFF (T)	Indicates that the temperature registered during the calibration is changed by +/-10°C or greater. It is recommended that you perform a new O-S-L calibration to obtain accurate measurement results. When the temperature comes back within the registered range, the status may be changed to ON.
OFF	Indicates that the frequency setting is changed off the frequency range registered for the calibration. The calibration is no longer valid.

Connecting a cable


Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements

Procedure

- Connect the one end of the port extension cable to the Cable and Antenna Analyzer Reflection/RF Out port of the instrument.
- 2. Connect the other end of the port extension cable to an antenna or feed line as illustrated in Figure 293.

Measurement result is displayed on the screen.

Figure 293 Connection for reflection measurement

NOTE

After calibration, do not change the connection of the port extension cable or the frequency setting. It may cause a measurement error.

Changing any frequency settings will automatically turn the calibration status to OFF on the display screen, which requires re-calibration to proceed next measurement.

CAUTION

The maximum input power for the **Cable and Antenna Analyzer Reflection/RF Out** port is +25 dBm. Do not connect this port directly to the output port of the system to prevent degraded performance or malfunctioning.

WARNING

Do not attempt to connect the instrument to the antenna when there is a risk of lightning. Electric shock may cause malfunction of or damage to the instrument.

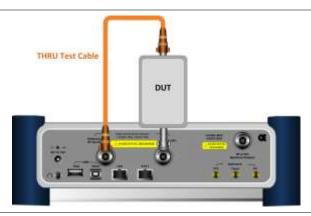

Connecting a cable for cable loss (1 port) measurements

Procedure

 Connect the one end of the cable under test to the Cable and Antenna Analyzer Reflection/RF Out port of the instrument. Connect the SHORT standard of the Cal Kit to the other end of the cable under test as illustrated in Figure 294.

Measurement result is displayed on the screen.

Figure 294 Connection for cable loss (1 port) measurement


Connecting a cable for 2-port vector measurements

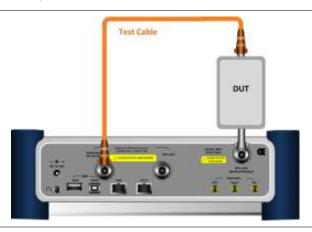
Procedure

- Connect the one end of the Thru test cable to the Cable and Antenna Analyzer Reflection/RF
 Out port of the instrument and the other end of the cable to DUT.
- Connect the DUT to the Cable and Antenna Analyzer RF In port of the instrument as illustrated in Figure 295.

Measurement result is displayed on the screen.

Figure 295 Connection for 2-port vector measurement

CAUTION


The maximum input power for the **Cable and Antenna Analyzer RF In** port is +25 dBm. However, a proper level of input to the **Cable and Antenna Analyzer RF In** port is 0 dBm. When the input power is expected to be greater than 0 dBm, you must adjust the output power for the RF Out.

Connecting a cable for 2-port scalar measurements

Procedure

- Connect the one end of the Thru test cable to the Cable and Antenna Analyzer Reflection/RF
 Out port of the instrument and the other end of the cable to DUT.
- 2. Connect the DUT to the **Spectrum Analyzer RF In** port of the instrument as illustrated in Figure 296. Measurement result is displayed on the screen.

Figure 296 Connection for 2-port scalar measurement

CAUTION

The maximum input power for the **Spectrum Analyzer RF In** port is +20 dBm.

Performing reflection measurements

The Reflection measurement can be used to characterize cable and antenna system to ensure transmission line impedance performance and signal reflection characteristics of cell-site across a specific frequency range in voltage standing-wave ration (VSWR) or return loss.

Making a measurement

Procedure

- **1.** Make a proper cable connection as described in "Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements" on page 546.
- 2. Press the MEASURE SETUP hot key.
- Press the Data Points soft key to change the resolution of your measurement, and then select the data point option: 126, 251, 501, 1001, and 2001. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

- 4. Optional. To turn the bias tee on, complete the following steps:
 - a. Toggle the Bias Tee soft key and select On.
 - **b.** Enter a value between 12 and 32 with 0.1 V step.
 - c. Enter the V soft key.

NOTE

The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

Optional. To select the output power, toggle the Output Power soft key between 0 dBm and -30 dBm

NOTE

When an amplifier's reflection is measured, it is recommended that you change this output power level to -30 dBm and then re-calibrate. Changing to -30 dBm may result in reduced measurement dynamic range.

 Optional. To turn the interference rejection on, toggle the Interference Rej soft key between On and Off to enable or disable the feature.

NOTE

It is recommended that you use this feature only when you suspect interfering signals in the area as turning this on slows down the measurement.

Measurement example

Figure 297 Reflection measurement in return loss scale

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for cable and antenna analyzer" on page 562 for more information.

NOTE

You can go to **MEASURE SETUP > Zoom** to view your measurements in detail with the user-definable zoom zones. See "Setting zoom zones" on page 561 for more information.

Performing DTF measurements

The Distance-To-Fault (DTF) measurement can be used to accurately identify fault locations in the cell-site transmission (cable and feed line) system, indicating signal discontinuities in VSWR or return loss over distance in meter or foot. This measurement precisely pinpoints the location of such things

as damaged or degraded antennas, connectors, amplifiers, filters, and duplexers.

Making a measurement

Procedure

- Make a proper cable connection as described in "Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements" on page 546.
- 2. Press the MEASURE SETUP hot key.
- 3. Press the **Data Points** soft key to change the resolution of your measurement, and then select the data point option: **126**, **251**, **501**, **1001**, and **2001**. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

- 4. Press the **DTF Settings** soft key, and then do the following:
 - To select a cable from the list, complete the following steps:
 - a. Press the Cable List soft key, and then select Standard Cable or Custom Cable. The cable list window appears.
 - **b.** Select a cable by using the rotary knob or the **Page Up/Page Down** soft keys.
 - c. Press the Select soft key.
 - d. Optional. In the standard cable list window, press the Add to Custom soft key to add the selected cable to the custom list.
 - To define a new cable, complete the following steps:
 - a. Press the **Prop Velocity** soft key to define the cable's relative propagation delay.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
 - d. Press the Cable Loss soft key to define the cable's cable loss.
 - e. Enter a value by using the numeric keys. You can also use the rotary knob.
 - f. Press the Enter soft key.

NOTE

The propagation velocity affects the calucation of the distance and the cable loss does the peak level of the discontinuity in a DTF measurement.

- Toggle the Metrics soft key and select the unit option for the X-axis: Meter or Foot.
- Press the Windowing soft key, and then select the video filtering option: Rectangular,
 Blackman, Nominal Side Lobe, Low Side Lobe, or Minimum Side Lobe.
- **5.** *Optional*. To turn the bias tee on, complete the following steps:
 - Toggle the Bias Tee soft key and select On.
 - **b.** Enter a value between 12 and 32 with 0.1 V step.
 - c. Enter the V soft key.

NOTE

The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

 Optional. To select the output power, toggle the Output Power soft key between 0 dBm and -30 dBm.

NOTE

When an amplifier's reflection is measured, it is recommended that you change this output power level to -30 dBm and then re-calibrate. Changing to -30 dBm may result in reduced measurement dynamic range.

 Optional. To turn the interference rejection on, toggle the Interference Rej soft key between On and Off to enable or disable the feature.

NOTE

It is recommended that you use this feature only when you suspect interfering signals in the area as turning this on slows down the measurement.

Measurement example

Figure 298 DTF measurement

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for cable and antenna analyzer" on page 562 for more information.

| Disput |

Figure 299 DTF measurement with the alternate DTF band on

NOTE

You can go to **MEASURE SETUP > Alternate DTF Band Settings** to scale down a specific sub-band. See "Setting alternate DTF band" on page 561 for more information.

Performing reflection-DTF measurements

You can view two measurement results simultaneously on the screen as you configure each measurement setting.

Making a measurement

Procedure

- 1. Make a proper cable connection as described in "Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements" on page 546.
- 2. Press the **MEASURE SETUP** hot key.
- Toggle the Active Window soft key between Top and Bottom and select the window to be active for setting.
- 4. Press the **Dual Config** soft key, and then select the dual configuration option:
 - To select the measurement mode for the top window, press the Top soft key, and then select Reflection (VSWR) or Reflection (Return Loss).
 - To select the measurement mode for the bottom window, press the Bottom soft key, and then select DTF (VSWR) or DTF (Return Loss).
 - To configure DTF settings for the bottom window, select Bottom > DTF Settings.
 See "Performing DTF measurements" on page 549 for more information.
 - To set the alternate DTF band settings for the bottom window, select Bottom > Alt DTF Band Settings. See "Setting alternate DTF band" on page 561 for more information.

NOTE

See "Performing reflection measurements" and "Performing DTF measurements" for more information on how to set other measurement setup parameters for the Reflection-DTF measurement.

Measurement example

Figure 300 Reflection-DTF dual measurement

1) Alt DTF band off:

2) Alt DTF band on:

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for cable and antenna analyzer" on page 562 for more information.

Performing cable loss (1 port) measurements

The Cable Loss (1 Port) measurement quantifies signal loss through a cable or other device over a defined frequency range by range by connecting one end of the cable to the instrument measurement port and terminating the other end of the cable with a short, or leaving it open altogether. This

measurement can be particularly useful in measuring the loss of feed line connected to the antenna.

Making a measurement

Procedure

- Make a proper cable connection as described in "Connecting a cable for cable loss (1 port)
 measurements" on page 546.
- 2. Press the MEASURE SETUP hot key.
- 3. Press the **Data Points** soft key to change the resolution of your measurement, and then select the data point option: **126**, **251**, **501**, **1001**, and **2001**. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

- 4. Optional. To turn the bias tee on, complete the following steps:
 - a. Toggle the Bias Tee soft key and select On.
 - b. Enter a value between 12 and 32 with 0.1 V step.
 - c. Enter the V soft key.

NOTE

The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

NOTE

See "Performing reflection measurements" for more information on how to set other measurement setup parameters for the Cable Loss (1 Port) measurement.

Measurement example


Figure 301 Cable loss (1 port) measurement

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for cable and antenna analyzer" on page 562 for more information.

Figure 302 Cable loss (1 port) measurement with the zone enabled

NOTE

You can go to **MEASURE SETUP > Zoom** to view your measurements in detail with the user-definable zoom zones. See "Setting zoom zones" on page 561 for more information.

Performing 1-port phase measurements

The 1-port Phase measurement is used to measure S₁₁ phase to tune antennas and to phase-match cables.

Making a measurement

Procedure

- 1. Make a proper cable connection as described in "Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements" on page 546.
- 2. Press the MEASURE SETUP hot key.
- Press the Data Points soft key to change the resolution of your measurement, and then select the data point option: 126, 251, 501, 1001, and 2001. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

- 4. Optional. To turn the bias tee on, complete the following steps:
 - a. Toggle the Bias Tee soft key and select On.
 - b. Enter a value between 12 and 32 with 0.1 V step.

c. Enter the V soft key.

NOTE

The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

NOTE

See "Performing reflection measurements" on page 548 for more information on how to set other measurement setup parameters for the Cable Loss (1 Port) measurement.

Measurement example

Figure 303 Cable loss (1 port) measurement

Figure 304 Cable loss (1 port) measurement with zoom

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the user-definable limit and Pass/Fail indication. See "Setting limit for cable and antenna analyzer" on page 562 for more information.

NOTE

You can go to **MEASURE SETUP > Zone** to view your measurements in detail with the user-definable zoom zones. See "Setting zoom zones" on page 561 for more information.

Performing Smith chart measurements

The Smith Chart measurement is used to measure DUTs' impedance and phase to properly tune RF devices. Smith chart also displays impedance-matching characteristics in cable and antenna systems or filter and duplexer devices.

Making a measurement

Procedure

- Make a proper cable connection as described in "Connecting a cable for reflection, DTF, 1-port phase, and Smith Chart measurements" on page 546.
- 2. Press the MEASURE SETUP hot key.
- 3. Press the **Data Points** soft key to change the resolution of your measurement, and then select the data point option: **126**, **251**, **501**, **1001**, and **2001**. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

- 4. Optional. To turn the bias tee on, complete the following steps:
 - a. Toggle the Bias Tee soft key and select On.
 - **b.** Enter a value between 12 and 32 with 0.1 V step.
 - c. Enter the V soft key.

NOTE

The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

NOTE

See "Performing reflection measurements" on page 548 for more information on how to set other measurement setup parameters for the Smith Chart measurement.

Measurement example

Figure 305 Smith chart measurement

Performing 2-port vector measurements

The Vector measurement is used to perform faster and more accurate measurement with around 80 dB dynamic range. It also provides antenna isolation measurement. You can determine DUT's S_{21} phase characteristic by selecting the measurement display type as Phase.

Making a measurement

Procedure

- Make a proper cable connection as described in "Connecting a cable for 2-port vector measurements" on page 547.
- 2. Press the MEASURE SETUP hot key.
- 3. Press the **Data Points** soft key to change the resolution of your measurement, and then select the data point option: **126**, **251**, **501**, **1001**, and **2001**. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.

- Toggle the **Display** soft key and select **Magnitude** to view measurements in dB or **Phase** in degree.
- **5.** *Optional*. To turn the bias tee on, complete the following steps:
 - a. Toggle the Bias Tee soft key and select On.
 - **b.** Enter a value between 12 and 32 with 0.1 V step.
 - c. Enter the V soft key.

NOTE

The instrument's built-in bias tee function (option 002) supplies 12-32 VDC bias to active devices through the **RF In** port, eliminating the need of an external power supply.

Optional. To select the output power, toggle the Output Power soft key between 0 dBm and -30 dBm.

NOTE

When an amplifier's reflection is measured, it is recommended that you change this output power level to -30 dBm and then re-calibrate. Changing to -30 dBm may result in reduced measurement dynamic range.

- 7. Optional. To set the number of measurements to be averaged, press the Average soft key and then adjust the number between one and five by using the rotary knob.
- Optional. To turn the interference rejection on, toggle the Interference Rej soft key between On and Off to enable or disable the feature.

NOTE

It is recommended that you use this feature only when you suspect interfering signals in the area as turning this on slows down the measurement.

Measurement example

Figure 306 2-port vector measurement

Performing 2-port scalar measurements

The Scalar measurement enables full characterization of DUT with dynamics over 100 dB.

Making a measurement

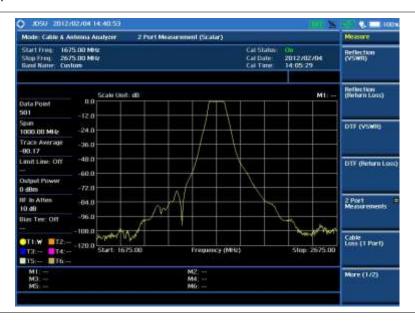
Procedure

- 1. Make a proper cable connection as described in "Connecting a cable for 2-port scalar measurements" on page 547.
- 2. Press the MEASURE SETUP hot key.

 Press the Data Points soft key to change the resolution of your measurement, and then select the data point option: 126, 251, 501, 1001, and 2001. Changing the data point does not affect current calibration.

NOTE

The larger number you choose, the higher resolution you get and the longer the instrument takes to sweep and display results. Selecting the data point larger than what you need for a measurement will result in unnecessarily long sweep time. It is recommended that you select high resolution data points only for an instance of measuring wide frequency bands or requiring precise measurement data.


Optional. To select the output power, toggle the Output Power soft key between 0 dBm and -30 dBm

NOTE

When an amplifier's reflection is measured, it is recommended that you change this output power level to -30 dBm and then re-calibrate. Changing to -30 dBm may result in reduced measurement dynamic range.

Measurement example

Figure 307 2-port scalar measurement

Analyzing measurements

Setting trace and display

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the Select Trace soft key, and then select the trace number: T1, T2, T3, T4, T5, or T6. The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.
- 3. Toggle the **Trace View** soft key and select **On** to display the selected trace.

4. To clear, write or capture, or hide the trace(s), do one of the following:

То	Select	Trace Legend
Clear current data and display with new measurements	Clear Write	W
Capture the selected trace and compare traces	Capture	С
Load a saved trace	Load	L
Hide the selected trace	Trace View > Off	F
Remove all the traces and initialize the trace settings	Trace Clear All	

- **5.** *Optional.* If you have at least two traces (T1 and T2), you can perform trace math:
 - a. Press the Trace Math soft key.
 - b. Press the T1 T2 -> T5 or T2 T1 -> T6 soft key.

NOTE

The trace to be loaded must be in the same measurement mode and has the same frequency setting as the current measurement.

Setting zoom zones

You can define up to three zoom-in zones so that you can view uplink and downlink frequencies in detail on a single measurement window for compliance verification.

Procedure

- 1. Press the MEASURE SETUP hot key.
- 2. Press the Zoom soft key.
- 3. To view a zoom zone in a separate chart, complete the following steps:
 - a. Press the Zoom soft key, and then select the zone number to zoom in: Zone 1, Zone 2, or Zone 3.
 - b. Toggle the **Zoom** soft key and select **On**.

The zoom-in chart for the selected zone appears under the measurement result.

- 4. To define a zone range, complete the following steps:
 - a. Press the **Zone** [1|2|3] soft key to select an active zone.
 - b. Toggle the **Zone** [1|2|3] soft key between **On** and **Off** to view or dismiss the active zone.
 - c. Press the Start Frequency soft key.
 - **d.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - e. Select the unit: GHz, MHz, kHz, or Hz.
 - f. Press the Stop Frequency soft key.
 - **g.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - h. Select the unit: GHz, MHz, kHz, or Hz.
- 5. To clear all the zones, press the Clear All soft key.

Setting alternate DTF band

You can use the Alt DTF Band in DTF measurements to scale down a specific sub-band without a

need of an additional calibration.

Procedure

- Press the MEASURE SETUP hot key.
- 2. Press the Alt DTF Band Settings soft key.
- Toggle the Alt DTF Band soft key and select On or Off to enable or disable the alternate band feature.
- 4. To set the start and stop distances for the alternate band, complete the following steps:
 - a. Press the Start Distance soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - c. Select the Enter soft key.
 - d. Press the Stop Frequency soft key.
 - Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - f. Select the Enter soft key.
- 5. To set the start and stop frequencies for the alternate band, complete the following steps:
 - a. Press the Alternate Start Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
 - d. Press the Alternate Stop Frequency soft key.
 - e. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - f. Select the unit: GHz, MHz, kHz, or Hz.
- 6. To set the center and span frequencies for the alternate band, complete the following steps:
 - a. Press the Alternate Center Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
 - d. Press the Alternate Span Frequency soft key.
 - e. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - f. Select the unit: GHz, MHz, kHz, or Hz.

Setting limit for cable and antenna analyzer

Procedure

- 1. Press the LIMIT hot key.
- 2. Press the Multi Segment Line soft key for Pass/Fail indication.
- 3. Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- Set the number of segments for the selected upper or lower limit line. You can set up to 50 segments.
 - a. Press the # of Line soft key.
 - **b.** Enter a value between 1 and 50 by using the numeric keys.
 - c. Press the Enter soft key.

- Press the Autoset soft key to let the instrument set the limit for each segment and display the line.
- **6.** Optional. To move the limit line, complete the following steps:
 - a. Select Limit Up/Down or Limit Left/Right.
 - b. Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7. Optional. To edit the segment properties, complete the following steps:
 - a. Press the Edit Limit soft key.
 - **b.** Press the **Move** soft key and then turn the rotary knob to select the segment to edit.
 - c. Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the Line soft key and select Off.
 - To add a new point, press the Add Point soft key.
 - To delete the selected point, press the **Delete Point** soft key.
 - To change the position, press the Frequency or Amplitude soft key, and then turn the rotary knob to change the value as desired.
- 8. Optional. Go to **SAVE/LOAD** > **Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

Using E1 Analyzer

This chapter provides instructions for using the E1 Analyzer function (option 004). Topics discussed in this chapter are as follows:

	Introduction	.565
	Display overview	.565
	Connecting a cable	.566
-	Monitoring transmission	.567
	Performing BERT testing	568

Introduction

The European Conference of Postal and Telecommunications Administrations (CEPT) originally standardized the E-carrier system, which revised and improved the earlier American T-carrier technology, and this has now been adopted by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T).

E1 is transmitted physically as 32 timeslots, but one is used for framing and typically one allocated for signaling call setup and tear down. Unlike Internet data services, E-carrier systems permanently allocate capacity for a voice call for its entire duration. This ensures high call quality because the transmission arrives with the same short delay (Latency) and capacity at all times.

This portable test instrument can be a useful tool to check the overall health of the transmission system and assist in locating the source of problems or defects.

The E1 Analyzer function provides following measurements:

- Monitoring
- BERT Testing (PCM31 only)

Display overview

Figure 308 provides descriptions for each segment of the measurement screen.

System settings and indicators Measurement BERT mode Logging status Event Logging: Off Start Time : 12/06 23:38:07 Elapsed Time: 00:00:03 Start/Stop and test time Pass/fail User input field Span Frequency 5000000 Hz indicator History FASRAI • Event Log Frame Sync AIS • E1_log:csv HDB3 Pattern Sync Screen TX Clock Error Injection menus Error Count Error Rate Measurement settings Frame Error Code Error [2.2e-07] [2.2e-04] TX LBO 8191 Alarm Count Loss Count FAS Frame Swic 0 AIS Tx On Measurement result

Figure 308 E1 analyzer screen

Connecting a cable

Out-of-service testing

Figure 309 Point-to-point connection

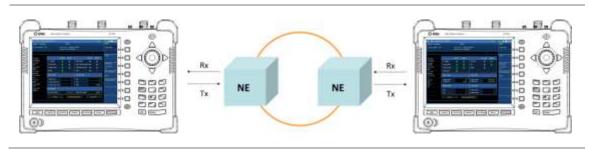


Figure 310 Loop-back connection

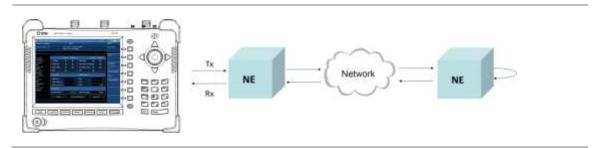
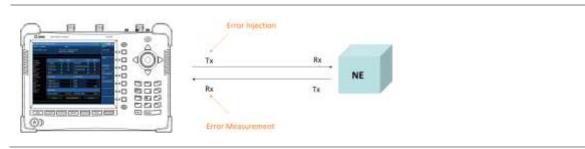
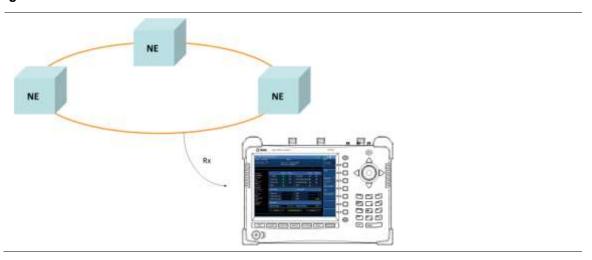




Figure 311 Error injection and measurement connection

In-service monitoring

Figure 312 In-service connection

Monitoring transmission

Making a test

Procedure

To select the measurement mode:

- 1. Press the MODE hard key.
- 2. Press the E1/T1 Analyzer soft key.
- 3. Select E1 Analyzer > Monitoring.

To configure measurement parameters:

- 1. Press the MEASURE SETUP hot key.
- Press the RX Mode soft key, and then select the receiver input option from the following choices:
 - Terminate: Provides 120-ohm nominal input impedance, according to the framing and line code settings.
 - Bridge: Provides input impedance greater than one kilohm for in-service monitoring, bridging the receiver input across lines that are terminated elsewhere in the network.
 - Monitor: Provides 120-ohm nominal input impedance for the in-service monitoring of E1 lines
- Toggle the Framing soft key between PCM30 and PCM31 and select the framing type for your receiver setting:
 - PCM30: Timeslots from 1 to 15 correspond to channels from 1 to 15 and timeslots from 17 to 31 to channels from 16 to 30. Timeslot 16 is for the multi-frame alignment and Channel Associated Signaling (CAS).
 - PCM31: Timeslots from 1 to 31 correspond to channels from 1 to 31.

NOTE

If the framing type does not match with your receiver setting, a framing alarm occurs.

- 4. Toggle the Line Code soft key between AMI and HDB3 and select the line code type to send an E1 signal:
 - AMI: It stands for Alternate Mark Inversion. A line code uses one three level signal to
 convey binary digits in which successive binary ones ("marks" or pulses) are of alternating
 polarity, either positive or negative, equal in amplitude. A binary zero ("space") is
 transmitted as no pulse or zero amplitude.
 - HDB3: It stands for High Density Bipolar order 3 encoding. It is a bipolar signaling technique (using both positive and negative pulses) based on the AMI. It extends AMI by inserting violation codes whenever there is a run of four or more zeros.

To start or stop monitoring:

- 1. Press the MEASURE hot key.
- Press the Monitoring soft key, and then select the monitoring option as needed: Start, Stop, or Clear.

Optional. You can save event records automatically by using the **Save Logging Data** soft key. See "Using save" on page 33 for more information.

Measurement example

Figure 313 E1 transmission monitoring for framing PCM30

NOTE

Bit Error is not supported for the framing type PCM30.

Performing BERT testing

There are three RX modes available for the BERT testing.

- Terminate Mode: The Terminate mode is used when you wish to send and receive an E1 signal. The instrument terminates the received signal with a low impedance termination, and requires that the circuit be disrupted for testing.
- Bridge Mode: The Bridge mode is similar to the monitor mode. However, in the Bridge mode, the instrument applies high impedance isolation resistors to the circuit under test. This isolation circuitry will protect the signal from any possible disruption. There is no need to plug into the TX jack of the test set while in the Bridge mode, and there is no need to specify a test pattern to be transmitted. However, the transmitter in the test set is sending the selected test pattern, framing, coding, and CRC.
- Monitor Mode: The Monitor (protected monitoring point) mode is used when a monitor access is to be made. The network element has isolated the MON signal from the live signal with high impedance resistors. It is useful that it protects the live signal from any possible disruptions caused by the testing process.

Making a test

Procedure

To select the measurement mode:

- 1. Press the MODE hard key.
- 2. Press the E1/T1 Analyzer soft key.
- 3. Select E1 Analyzer > BERT.

To configure measurement parameters:

- 1. Press the **MEASURE SETUP** hot key.
- Press the RX Mode soft key, and then select the receiver input option from the following choices:
 - Terminate: Provides 120-ohm nominal input impedance, according to the framing and line code settings.
 - Bridge: Provides input impedance greater than one kilohm for in-service monitoring, bridging the receiver input across lines that are terminated elsewhere in the network.
 - Monitor: Provides 120-ohm nominal input impedance for the in-service monitoring of E1 lines
- Toggle the Framing soft key between PCM30 and PCM31 and select the framing type for your receiver setting:
 - PCM30: Timeslots from 1 to 15 correspond to channels from 1 to 15 and timeslots from 17 to 31 to channels from 16 to 30. Timeslot 16 is for the multi-frame alignment and Channel Associated Signaling (CAS).
 - PCM31: Timeslots from 1 to 31 correspond to channels from 1 to 31.

NOTE

If the framing type does not match with your receiver setting, a framing alarm occurs.

- 4. Toggle the Line Code soft key between AMI and HDB3 and select the line code type to send an E1 signal:
 - AMI: It stands for Alternate Mark Inversion. A line code uses one three level signal to
 convey binary digits in which successive binary ones ("marks" or pulses) are of alternating
 polarity, either positive or negative, equal in amplitude. A binary zero ("space") is
 transmitted as no pulse or zero amplitude.
 - HDB3: It stands for High Density Bipolar order 3 encoding. It is a bipolar signaling technique (using both positive and negative pulses) based on the AMI. It extends AMI by inserting violation codes whenever there is a run of four or more zeros.
- 5. Press the **Pattern** soft key, and then select the stress pattern option from the following choices:
 - 1-4: A four-bit pattern that contains a single one, being used to test clock recovery.
 - 1-8: An eight-bit pattern that contains a single one, being used to test clock recovery.
 - All 1'S: A pattern that causes line drivers to consume the maximum power.
 - All 0'S: A pattern that is often selected to verify HDB3 provisioning. Circuit will drop if optioned for AMI.
 - Alternate: A pattern that alternates between ones and zeroes.
- **6.** Toggle the **TX Clock** soft key between **Internal** and **RX** and select the timing source option to measure frequency and timing:
 - Internal: Internal clock uses an internal oscillator in case of external reference is not available and the instrument does not transmit signal to synchronized equipment. The instrument provides the clock to the unit under test and most cases in Loopback test mode.
 - RX: Transmit clock uses the frequency recovered from the received signal (Network Loop), if accurate frequency measurement is required.
- 7. Toggle the TX LBO soft key between 0 dB and -6 dB and select the level for TX Line Build Out.
- 8. Toggle the CRC-4 soft key between On and Off to activate or deactivate the CRC-4.

NOTE

CRC-4 is used to detect errors in blocks of data transmitted across communication links. The detection is determined by a formula applied at both ends of transmit and receive. E1 uses a four-bit CRC (CRC-4) for error checking.

To start or stop testing:

- 1. Press the MEASURE hot key.
- 2. Press the BERT soft key, and then select the testing option as needed: Start, Stop, or Clear.

To select the error injection type:

 Press the Error Injection soft key, and then select the error injection type: None, 1E-3, 1E-4, 1E-5, or Single.

Optional. You can save event records automatically by using the **Save Logging Data** soft key. See "Using save" on page 33 for more information.

Measurement example

Figure 314 E1 BERT testing for framing PCM30

NOTE

Bit Error is not supported for the framing type PCM30.

Using T1 Analyzer

This chapter provides instructions for using the T1 Analyzer function (option 005). Topics discussed in this chapter are as follows:

Introduction	.573
Display overview	.573
Connecting a cable	.574
Monitoring transmission	.575
Performing BERT testing	.576
Performing RX signal testing	.578
Performing loop testing	.580

Introduction

The T1 is what telephone companies have traditionally used to transport digitized telephone conversations between central offices. As early as the 1960's, a single T1 circuit made it possible for a telephone company to deliver 24 high quality voice conversations. T1 is a fully digitalized service with no possibility of crosstalk, which is common in analog carrier networks where copper pairs pickup emissions from neighboring pairs. Significant increases in noise immunity were also achieved by adopting this new digital transmission standard.

Since the early 1980's, T1 service has been available to private industry throughout the country. This document will discuss the various types of T1 measurement items, how to measure them, and understand the general guidelines of T1 analysis using the JD785A Base Station Analyzer.

This portable test instrument can be a useful tool to check the overall health of the transmission system and assist in locating the source of problems or defects. The T1 Analyzer function provides following measurements:

- Monitoring
- RX Signal Level
- BERT Testing
- Loop Testing

Display overview

Figure 315 provides descriptions for each segment of the measurement screen.

System settings and indicators Measurement Mode: Ti Analyze RERT mode Logging status Event Logging Off Start Time: 12/06 23:39:00 ed Time 00:00 05 and test time Pass/fail User input field indicator History . Event Log Frame Sync RAI (Yellow Alarm) @ . T1_log.csv Pattern Syn . At5 (Blue Alarm) BPV Screen TX Clock menus Loss Count Measurement settings Signal Loss 0 RAI o TX LBO Alarm Injection o o Frame Sync Loss AIS 0 BPV Pattern Sync Loss 23366 Error Rate Measurement result

Figure 315 T1 analyzer screen

Connecting a cable

Out-of-service testing

Figure 316 Point-to-point connection

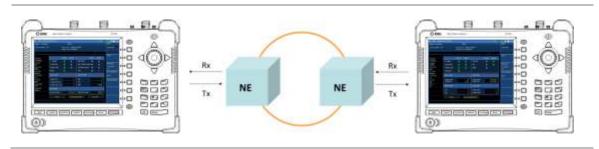


Figure 317 Loop-back connection

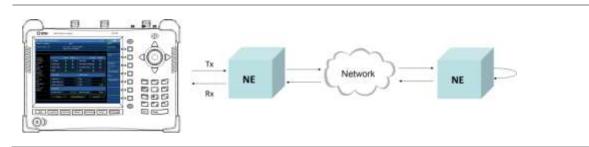
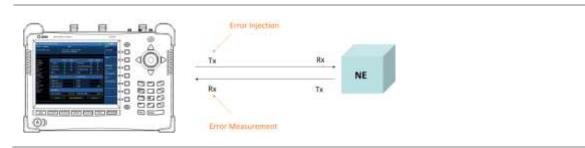
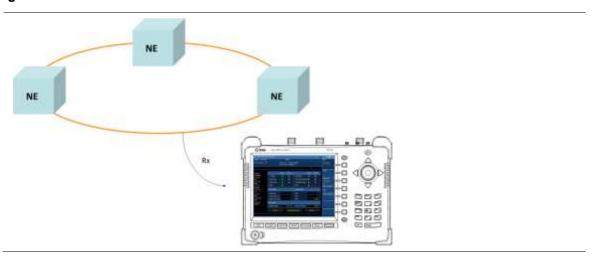




Figure 318 Error injection and measurement connection

In-service monitoring

Figure 319 In-service connection

Monitoring transmission

Making a test

Procedure

To select the measurement mode:

- 1. Press the MODE hard key.
- 2. Press the E1/T1 Analyzer soft key.
- 3. Select T1 Analyzer > Monitoring.

To configure measurement parameters:

- 1. Press the **MEASURE SETUP** hot key.
- Press the RX Mode soft key, and then select the receiver input option from the following choices:
 - Terminate: Provides 100-ohm nominal input impedance, according to the framing, line code, and BER pattern settings.
 - Bridge: Provides input impedance greater than one kilohm for in-service monitoring, bridging the receiver input across lines that are terminated elsewhere in the network.
 - Monitor: Provides 100-ohm nominal input impedance for the in-service monitoring of T1 lines.
- Toggle the Framing soft key between SF-D4 and ESF and select the framing type for your receiver setting:
 - SF-D4 (Super Frame-D4): Group of 12 frames, used to align equipment for framing.
 - ESF (Extended Super Frame): Group of 24 frames, used to align equipment for framing.
 4K for a maintenance channel (Facilities Data Link), 2K for CRC-6 checksum, and 2K for framing/synchronization.

NOTE

If the framing type does not match with your receiver setting, a framing alarm occurs.

- 4. Toggle the Line Code soft key between AMI and B8ZS and select the line code type to send an T1 signal:
 - AMI: It stands for Alternate Mark Inversion. A line code uses one three level signal to
 convey binary digits in which successive binary ones ("marks" or pulses) are of alternating
 polarity, either positive or negative, equal in amplitude. A binary zero ("space") is
 transmitted as no pulse or zero amplitude.
 - B8ZS: It stands for Bipolar with 8-Zero Substitution. A coding scheme in which the transmitter "substitutes" a fixed pattern of ones, zeros, and BPVs in place of 8 consecutive zeros.

To start or stop monitoring:

- 1. Press the MEASURE hot key.
- Press the Monitoring soft key, and then select the monitoring option as needed: Start, Stop, or Clear.

Optional. You can save event records automatically by using the **Save Logging Data** soft key. See "Using save" on page 33 for more information.

Measurement example

Figure 320 T1 transmission monitoring

Performing BERT testing

Making a test

Procedure

To select the measurement mode:

- 1. Press the MODE hard key.
- 2. Press the E1/T1 Analyzer soft key.
- 3. Select T1 Analyzer > BERT.

To configure measurement parameters:

- 1. Press the MEASURE SETUP hot key.
- Press the RX Mode soft key, and then select the receiver input option from the following choices:
 - Terminate: Provides 100-ohm nominal input impedance, according to the framing, line code, and BER pattern settings.
 - Bridge: Provides input impedance greater than one kilohm for in-service monitoring, bridging the receiver input across lines that are terminated elsewhere in the network.
 - Monitor: Provides 100-ohm nominal input impedance for the in-service monitoring of T1 lines.
- Toggle the Framing soft key between SF-D4 and ESF and select the framing type for your receiver setting:
 - SF-D4 (Super Frame-D4): Group of 12 frames, used to align equipment for framing.
 - ESF (Extended Super Frame): Group of 24 frames, used to align equipment for framing.
 4K for a maintenance channel (Facilities Data Link), 2K for CRC-6 checksum, and 2K for framing/synchronization.

NOTE

If the framing type does not match with your receiver setting, a framing alarm occurs.

- 4. Toggle the Line Code soft key between AMI and B8ZS and select the line code type to send an T1 signal:
 - AMI: It stands for Alternate Mark Inversion. A line code uses one three level signal to
 convey binary digits in which successive binary ones ("marks" or pulses) are of alternating
 polarity, either positive or negative, equal in amplitude. A binary zero ("space") is
 transmitted as no pulse or zero amplitude.
 - B8ZS: It stands for Bipolar with 8-Zero Substitution. A coding scheme in which the transmitter "substitutes" a fixed pattern of ones, zeros, and BPVs in place of 8 consecutive zeros.
- 5. Press the **Pattern** soft key, and then select the stress pattern option from the following choices:
 - 1-8: An eight-bit pattern that contains a single one, being used to test clock recovery.
 - 1-16: A sixteen-bit pattern that contains a single one, being used to test clock recovery.
 - All 1'S: A pattern that causes line drivers to consume the maximum power.
 - All 0'S: A pattern that is often selected to verify HDB3 provisioning. Circuit will drop if optioned for AMI.
 - Alternate: A pattern that alternates between ones and zeroes.
 - 3-24: A twenty-four bit-pattern containing 3 ones with the longest length of consecutive zeroes constrained to fifteen. It has ones density of 12.5% and is used to check clock recovery.
 - QRSS: A pseudorandom pattern that is a common test pattern and simulates live traffic on a circuit.
 - 2e23: A pseudorandom pattern based on a 23 bit shift register.
 - 2e15: A pseudorandom pattern based on a 15 bit shift register.
 - 2e23 INV: Bit inversed pseudorandom pattern based on a 23 bit shift register.
 - 2e15 INV: Bit inversed pseudorandom pattern based on a 15 bit shift register.
- 6. Toggle the TX Clock soft key between Internal and RX and select the timing source option to measure frequency and timing:
 - Internal: Internal clock uses an internal oscillator in case of external reference is not available and the instrument does not transmit signal to synchronized equipment. The instrument provides the clock to the unit under test and most cases in Loopback test mode.
 - RX: Transmit clock uses the frequency recovered from the received signal (Network Loop), if accurate frequency measurement is required.
- Press the TX LBO soft key, and then select the level for TX Line Build Out option from the following choices:
 - 0 dB: Is used in most cases including that the test set is connected to the DSX front panel, to CSU, to NIU or Channel Bank or that the cabling is less than about 130 feet in-between test set and DSX.
 - -7.5 dB: Is used in cases that attenuation is needed where the T1 line is series connected to 7.5 dB attenuator.
 - -15 dB: Is used in cases that attenuation is needed where the T1 line is series connected to 15 dB attenuator.

To start or stop testing:

- 1. Press the MEASURE hot key.
- 2. Press the BERT soft key, and then select the testing option as needed: Start, Stop, or Clear.

To select the error injection type:

 Press the Error Injection soft key, and then select the error injection type: None, 1E-3, 1E-4, 1E-5, or Single.

To set the error injection optios:

- 1. Press the Alarm Injection soft key.
- Toggle the AIS Alarm soft key between On and Off to enable or disable the Alarm Indication Signal.
- Toggle the RAI Alarm soft key between On and Off to enable or disable the Remote Alarm Indication.

Optional. You can save event records automatically by using the **Save Logging Data** soft key. See "Using save" on page 33 for more information.

Measurement example

Figure 321 T1 BERT testing

Performing RX signal testing

Making a test

Procedure

To select the measurement mode:

- 1. Press the MODE hard key.
- 2. Press the E1/T1 Analyzer soft key.
- 3. Select T1 Analyzer > RX Signal.

To configure measurement parameters:

- 1. Press the MEASURE SETUP hot key.
- Press the RX Mode soft key, and then select the receiver input option from the following choices:
 - Terminate: Provides 100-ohm nominal input impedance, according to the framing, line code, and BER pattern settings.
 - Bridge: Provides input impedance greater than one kilohm for in-service monitoring,

bridging the receiver input across lines that are terminated elsewhere in the network.

- Monitor: Provides 100-ohm nominal input impedance for the in-service monitoring of T1 lines
- Toggle the Framing soft key between SF-D4 and ESF and select the framing type for your receiver setting:
 - SF-D4 (Super Frame-D4): Group of 12 frames, used to align equipment for framing.
 - ESF (Extended Super Frame): Group of 24 frames, used to align equipment for framing.
 4K for a maintenance channel (Facilities Data Link), 2K for CRC-6 checksum, and 2K for framing/synchronization.

NOTE

If the framing type does not match with your receiver setting, a framing alarm occurs.

- 4. Toggle the Line Code soft key between AMI and B8ZS and select the line code type to send an T1 signal:
 - AMI: It stands for Alternate Mark Inversion. A line code uses one three level signal to
 convey binary digits in which successive binary ones ("marks" or pulses) are of alternating
 polarity, either positive or negative, equal in amplitude. A binary zero ("space") is
 transmitted as no pulse or zero amplitude.
 - B8ZS: It stands for Bipolar with 8-Zero Substitution. A coding scheme in which the transmitter "substitutes" a fixed pattern of ones, zeros, and BPVs in place of 8 consecutive zeros.

To start or stop testing:

- 1. Press the **MEASURE** hot key.
- Press the RX Signal soft key, and then select the testing option as needed: Start, Stop, or Clear.

Optional. You can save event records automatically by using the **Save Logging Data** soft key. See "Using save" on page 33 for more information.

Measurement example

Figure 322 T1 RX signal testing

Performing loop testing

Making a test

Procedure

To select the measurement mode:

- 1. Press the MODE hard key.
- 2. Press the E1/T1 Analyzer soft key.
- 3. Select T1 Analyzer > Loop Test.

To configure measurement parameters:

- 1. Press the MEASURE SETUP hot key.
- Press the RX Mode soft key, and then select the receiver input option from the following choices:
 - Terminate: Provides 100-ohm nominal input impedance, according to the framing, line code, and BER pattern settings.
 - Bridge: Provides input impedance greater than one kilohm for in-service monitoring, bridging the receiver input across lines that are terminated elsewhere in the network.
 - Monitor: Provides 100-ohm nominal input impedance for the in-service monitoring of T1 lines
- Toggle the Framing soft key between SF-D4 and ESF and select the framing type for your receiver setting:
 - SF-D4 (Super Frame-D4): Group of 12 frames, used to align equipment for framing.
 - ESF (Extended Super Frame): Group of 24 frames, used to align equipment for framing.
 4K for a maintenance channel (Facilities Data Link), 2K for CRC-6 checksum, and 2K for framing/synchronization.

NOTE

If the framing type does not match with your receiver setting, a framing alarm occurs.

- 4. Toggle the Line Code soft key between AMI and B8ZS and select the line code type to send an T1 signal:
 - AMI: It stands for Alternate Mark Inversion. A line code uses one three level signal to
 convey binary digits in which successive binary ones ("marks" or pulses) are of alternating
 polarity, either positive or negative, equal in amplitude. A binary zero ("space") is
 transmitted as no pulse or zero amplitude.
 - B8ZS: It stands for Bipolar with 8-Zero Substitution. A coding scheme in which the transmitter "substitutes" a fixed pattern of ones, zeros, and BPVs in place of 8 consecutive zeros.
- 5. Press the Pattern soft key, and then select the stress pattern option from the following choices:
 - 1-8: An eight-bit pattern that contains a single one, being used to test clock recovery.
 - 1-16: A sixteen-bit pattern that contains a single one, being used to test clock recovery.
 - All 1'S: A pattern that causes line drivers to consume the maximum power.
 - All 0'S: A pattern that is often selected to verify HDB3 provisioning. Circuit will drop if optioned for AMI.
 - Alternate: A pattern that alternates between ones and zeroes.
 - 3-24: A twenty-four bit-pattern containing 3 ones with the longest length of consecutive zeroes constrained to fifteen. It has ones density of 12.5% and is used to check clock recovery.
 - QRSS: A pseudorandom pattern that is a common test pattern and simulates live traffic on a circuit.

- 2e23: A pseudorandom pattern based on a 23 bit shift register.
- 2e15: A pseudorandom pattern based on a 15 bit shift register.
- 2e23 INV: Bit inversed pseudorandom pattern based on a 23 bit shift register.
- 2e15 INV: Bit inversed pseudorandom pattern based on a 15 bit shift register.
- 6. Toggle the TX Clock soft key between Internal and RX and select the timing source option to measure frequency and timing:
 - Internal: Internal clock uses an internal oscillator in case of external reference is not available and the instrument does not transmit signal to synchronized equipment. The instrument provides the clock to the unit under test and most cases in Loopback test mode.
 - RX: Transmit clock uses the frequency recovered from the received signal (Network Loop), if accurate frequency measurement is required.
- Press the TX LBO soft key, and then select the level for TX Line Build Out option from the following choices:
 - 0 dB: Is used in most cases including that the test set is connected to the DSX front panel, to CSU, to NIU or Channel Bank or that the cabling is less than about 130 feet in-between test set and DSX.
 - -7.5 dB: Is used in cases that attenuation is needed where the T1 line is series connected to 7.5 dB attenuator.
 - -15 dB: Is used in cases that attenuation is needed where the T1 line is series connected to 15 dB attenuator.
- 8. Press the **Loop Codes** soft key, and then do one of the following option:
 - To select the link option, toggle press the Link soft key between Inband and Datalink.
 Datalink is used when the framing is set to ESF.
 - To select the Channel Service Unit, press the CSU soft key.
 - To select the Network Interface Unit, press the NIU soft key.

To start or stop testing:

- 1. Press the **MEASURE** hot key.
- Press the Loop Test soft key, and then select the testing option as needed: Start, Stop, or Clear.

To activate or deactiave the external loop back:

- 1. Press the **Remote Loop Up** to activate the external loop back so that the instrument sends the system a request of the loop back mode.
- 2. Press the **Remote Loop Dn** to deactivate the external loop back so that the instrument sends the system a request to clean the loop back mode.

To activate or deactiave the internal loop back:

- 1. Press the **Self Loop Up** to activate the internal loop back.
- 2. Press the **Self Loop Dn** to deactivate the internal loop back, reverting the instrument to a through mode.

To select the error injection type:

 Press the Error Injection soft key, and then select the error injection type: None, 1E-3, 1E-4, 1E-5, or Single.

To set the error injection optios:

- 1. Press the Alarm Injection soft key.
- Toggle the AIS Alarm soft key between On and Off to enable or disable the Alarm Indication Signal.

Toggle the RAI Alarm soft key between On and Off to enable or disable the Remote Alarm Indication.

Optional. You can save event records automatically by using the **Save Logging Data** soft key. See "Using save" on page 33 for more information.

Measurement example

Figure 323 T1 loop testing

Using Channel Scanner

This chapter provides instructions for using the Channel Scanner function (option 012). Topics discussed in this chapter are as follows:

Introduction	.584
Display overview	.584
Connecting a cable	.584
Selecting measurement mode	.586
Configuring test parameters	586
Making channel scanner measurements	589
Making frequency scanner measurements	590
Making custom scanner measurements	591
Analyzing measurements	593

Introduction

A Channel Scanner is a radio receiver that can automatically tune or scan two or more discrete frequencies and multi-channels, indicating when it finds a signal on one of them and then continuing scanning when that frequency goes silent.


You can measure up to 20 channels with this channel scanner. Using existing format-based or custom parameters, you will be able to easily verify improper multi-channel power levels.

- Channel Scanner
- Frequency Scanner
- Custom Scanner (Channel or Frequency)

Display overview

Figure 324 provides descriptions for each segment of the measurement screen.

Figure 324 Channel scanner screen

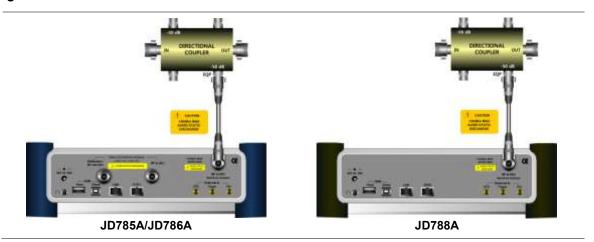
Connecting a cable

Direct connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the Power amplifier output port of BTS.

Figure 325 Direct connection

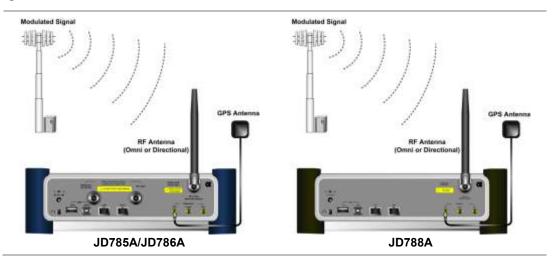


Indirect connection

Procedure

 Connect the Spectrum Analyzer RF In port of the JD780A series and the monitor (test) port of BTS

Figure 326 Indirect connection


CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Over the air (OTA)

- Connect an Omni/directional RF antenna to the Spectrum Analyzer RF In port of the JD780A series.
- 2. Connect a GPS antenna to the GPS port of the JD780A series.

Figure 327 OTA connection

CAUTION

If the input signal level to be measured is less than 0 dBm, set 0 dB attenuation or turn on the preamp to have better dynamic range for the OTA testing.

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Press the Channel Scanner soft key. The Channel Scanner mode is selected by default.
- **3.** To change the measurement mode, press the **MEASURE** hot key and then select the measurement mode:
 - Channel Scanner
 - Frequency Scanner
 - Custom Scanner

Configuring test parameters

Setting frequency

You need to set the channel or frequency to be scanned depending on the scanner mode: channel scanner, frequency scanner, and custom scanner. Refer to each scanner mode for how to set the channel or frequency.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- Press the Auto Scale soft key. Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference value on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - c. Press the unit soft key or the ENTER hard key.
- **3.** To set the attenuation option, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - b. Press the Attenuation Value soft key to set the level.
 - **c.** Enter a value between 0 and 55 in fives by using the numeric keys.
 - d. Press the dB soft key or the ENTER hard key.
- To couple the input attenuator's level with your reference level setting, select **Attenuation** Couple.

As you increase the reference setting, the attenuation level also increases accordingly.

Optional. To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBm, dBV, dBmV, dBμV, V, or W.
 The scale unit on the screen changes accordingly.

Pre-amplifier

You can turn the internal pre-amplifier on to correct and compensate for the gain of the preamp so that amplitude readings show the value at the input connector.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the **Preamp** soft key and select **On** or **Off** as needed.

NOTE

You can turn the Preamp on when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn the **External Offset** on and manually set the external offset value. An offset consists of a cable loss and a user offset and the measurement result shows the value reflecting both offset values. When the external offset value is set at 40 dB in the Spectrum mode, the measurement result compensates 40 dB at both the Spectrum Analyzer and Signal Analyzer modes

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select On.
- 3. Enter a value by using the numeric keys.
- **4.** Press the **dB** soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Setting average

You can set the number of measurements to be averaged for the trace presentation. A maximum of 100 times of averaging can be set. When the averaging reaches to your setting, a new measurement value replaces the measurement value in sequence from the earliest.

Procedure

- 1. Press the BW/AVG hard key.
- 2. Press the Average soft key.
- 3. Enter a value between 1 and 100 as needed by using the numeric keys.
- 4. Press the Enter soft key.

Setting sweep mode

The default setting is **Continue** to sweep continuously for most on-going measurements. If you want to hold the measurement or get a single sweep, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1. Press the SWEEP hot key.
- Toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key. The letter HOLD in red appears and the sweeping is paused.
- 3. Optional. Press the Sweep Once soft key to get a new measurement.

To return to the continuous sweep mode:

 Toggle the Sweep Mode soft key and select Continue. You can also use the HOLD hot key. The letter HOLD in red disappears and the sweeping resumes.

NOTE

Selecting **Sweep Mode > Fast** may reduce the measurement accuracy, but you can use this fast sweep mode to identify the existence of interfering signals.

Making channel scanner measurements

Setting channel

You need to set the channel to be scanned.

Procedure

- 1. Press the FREQ/DIST hard key.
- 2. To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - b. Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c. Press the **Select** soft key or the rotary knob to confirm the selection.
- Toggle the Link soft key to select the scanning direction and select Fwd for forward or Rev for reverse.
- **4.** To set the starting channel, complete the following steps:
 - a. Press the Start Channel soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- 5. To set the amount of channel increment in scanning channels, complete the following steps:
 - a. Press the Channel Step soft key.
 - **b.** Enter a value by suing the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.
- **6.** To set the integration bandwidth, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 7. To set the number of channels to be displayed in the measurement table, complete the following steps:
 - a. Press the # of Channels soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

Measurement example

Test results can be saved as a *.csv file format so that you can work on it in any spreadsheet software.

Figure 328 Channel scanner measurement

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line and channel limit. See "Setting limit for channel scanner" on page 593 for more information.

Making frequency scanner measurements

Setting frequency

You need to set the frequency to be scanned.

- 1. Press the FREQ/DIST hard key.
- **2.** To set the starting center frequency, complete the following steps:
 - a. Press the Start Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 3. To set the amount of frequency increment in scanning channels, complete the following steps:
 - a. Press the Frequency Step soft key.
 - **b.** Enter a value by suing the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **4.** To set the integration bandwidth, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **5.** To set the number of frequencies to be displayed in the measurement table, complete the following steps:
 - a. Press the # of Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the Enter soft key.

Measurement example

Figure 329 Frequency scanner measurement

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line and channel limit. See "Setting limit for channel scanner" on page 593 for more information.

Making custom scanner measurements

Setting channel/frequency

You can customize channels or frequencies to be scanned as you desire.

Procedure

To set the channels to be scanned:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- 3. To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - b. Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - c. Press the **Select** soft key or the rotary knob to confirm the selection.
- Toggle the Link soft key to select the scanning direction and select Fwd for forward or Rev for reverse.
- 5. Press the **Index** soft key, and then enter an index number by turning the rotary knob or using the numeric keys.
- **6.** To set the channel number for the selected index, complete the following steps:
 - Press the Channel Number soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.

c. Press the Enter soft key.

The instrument displays a corresponding center frequency for the channel number.

- 7. To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 8. To add more channels to be scanned, repeat steps 5-7.
- 9. Press the ESC hard key to dismiss the channel list window and view the scanning result.

To set the frequencies to be scanned:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the **Index** soft key, and then enter an index number by turning the rotary knob or using the numeric keys.
- **4.** To set the center frequency for the selected index, complete the following steps:
 - a. Press the Center Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- 5. To set the integration bandwidth for the selected index, complete the following steps:
 - a. Press the Integration Bandwidth soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** To add more channels to be scanned, repeat steps **3-5**.
- 7. Press the ESC hard key to dismiss the channel list window and view the scanning result.

Measurement example

Figure 330 Custom scanner measurement

NOTE

You can use the *LIMIT* hot key to analyze your measurements with the display line and channel limit. See "Setting limit for channel scanner" on page 593 for more information.

Analyzing measurements

Setting limit for channel scanner

Procedure

To use the display line:

- 1. Press the LIMIT hot key.
- 2. Press the Display Line soft key to set a threshold for the limit line and Pass/Fail indication.
- 3. Enter a value, and then press the dBm unit soft key.
- 4. Toggle the Display Line soft key between On and Off to display or dismiss the limit line.

To use the channel limit:

- 1. Press the LIMIT hot key.
- 2. Press the Channel Limit soft key to set the limits for each channel index.
- **3.** Press the **Index** soft key, and then select the channel/frequency index number by turning the rotary knob or using the numeric keys.
- 4. Toggle the Limit soft key between On and Off to enable or disable the Pass/Fail indication.
- 5. Set the upper threshold:
 - a. Press the High Limit soft key.
 - **b.** Enter a value for the upper limit.
 - c. Press the dBm unit soft key.
- 6. Set the lower threshold:
 - a. Press the Low Limit soft key.
 - **b.** Enter a value for the lower limit.
 - c. Press the dBm unit soft key.
- Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Using Power Meter

This chapter provides instructions for using the RF Power Meter function and the Optical Power Meter function. Topics discussed in this chapter are as follows:

Introduction	595
Display overview	595
Performing internal RF power measurements	595
Performing external RF power measurements	600
Performing optical power measurements	603

Introduction

The Power Meter of the JD780A series uses power measurement based on spectrum measurement results to provide an accurate power measurement result unlike a general spectrum analyzer, of which power accuracy may be degraded if the span is set too wide.

The power meter also provides Pass/Fail indication with user-defined lower and upper limits.

The Power Meter function provides following measurements:

- Internal RF Power Measurement
- External RF Power Measurement
- Optical Power Measurement

Display overview

Figure 331 provides descriptions for each segment of the measurement screen.

System settings, global positioning information, and indicators Measurement mode Input settings 10:00 dBw 193.370 000 MHz and limits Pass/fail 1.0000000000 GH User input field indicator Display Absolute Detector Mode 20.000000 MHz External Offset 0.00 dB Screen Start Frequency menus 990 000000 MH 2.43 dBm 1.010000000 GH Channel Standard GSM 450 More (1/2) Measurement settings and results

Figure 331 Power measurement screen

Performing internal RF power measurements

The internal power measurement of the JD780A series collects powers from the raw data of spectrum analyzer in the optimal span and integrates the powers up to the specified user span, which results in an accurate power measurement, independent of the span setting.

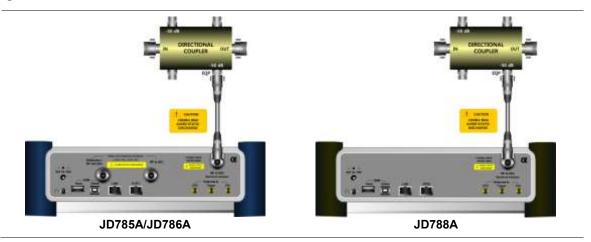
Connecting a cable

Direct connection

Procedure

1. Connect the **Spectrum Analyzer RF In** port of the JD780A series and the Power amplifier output port of BTS as shown in Figure 332.

Figure 332 Direct connection



Indirect connection

Procedure

1. Connect the **Spectrum Analyzer RF In** port of the JD780A series and the monitor (test) port of BTS as shown in Figure 333.

Figure 333 Indirect connection

CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W). If the input signal level to be measured is greater than +25 dBm, use a *High Power Attenuator* to prevent damage when you directly connect the signal to the instrument or connect the signal from the coupling port of a directional coupler.

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Select More (1/2) > Power Meter > Internal RF Power Meter.

Setting frequency

You need to set the frequency range to be measured either with the center frequency and span or with the start and stop frequencies. You can also set the frequency with the channel number and span.

Procedure

To set the center frequency and span:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Center Frequency soft key.
- 4. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- **6.** Press the **Span** soft key, and then do one of the following:
 - To set the span manually, select **Span**, enter a value, and then select the unit.
 - To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

The **Zero Span** option is available only in the Spectrum mode. If you have selected **Zero Span**, select **TRIGGER > Free Run**, **External**, **GPS**, **Video**, or **Display Position**.

To set the start and stop frequencies:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. Press the Start Frequency soft key.
- 4. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 5. Select the unit: GHz, MHz, kHz, or Hz.
- 6. Press the Stop Frequency soft key.
- 7. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- 8. Select the unit: GHz, MHz, kHz, or Hz.

To set the channel number and span:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- **3.** To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears.
 See "Appendix C Band, frequency & channel standard" on page 628 for more information.
 - b. Select the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.

- c. Press the **Select** soft key or the rotary knob to confirm the selection.
- Toggle the Link soft key to select the sweep direction and select Fwd for forward or Rev for reverse.
- **5.** To set the channel number, complete the following steps:
 - a. Press the Channel Number soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key or ENTER hard key to complete the entry. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- **6.** To set the span, complete the following steps:
 - a. Press the Span soft key.
 - **b.** Select the span option, from the following choices:
 - To set the span manually, select Span, enter a value, and then select the unit.
 - To set the span automatically, select Full Span, Zero Span, or Last Span as needed.

NOTE

The **Zero Span** option is available only in the Spectrum mode. If you have selected **Zero Span**, select **TRIGGER** > **Free Run**, **External**, **GPS**, **Video**, or **Display Position**.

Optional. To define the amount of frequency increment for the rotary knob:

- 1. Press the Frequency Step soft key, if the Freq is selected.
- 2. Enter a value by using the numeric keys.
- 3. Press the unit: GHz, MHz, kHz, or Hz.

Optional. To define the amount of channel increment for the rotary knob:

- 1. Press the Channel Step soft key, if the Channel is selected.
- 2. Enter a value by using the numeric keys.
- 3. Press the Enter soft key.

Setting amplitude

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the **Display** soft key and select the display method: **Relative** or **Absolute**.
- If the Relative is selected, press the Set Reference soft key to set the current value as the reference.
- **4.** To specify the display range, complete the following steps:
 - a. Press the Display Maximum soft key to set the maximum value for the power meter.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the dBm soft key.
 - d. Press the **Display Minimum** soft key to set the minimum value for the power meter.
 - **e.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - f. Press the dBm soft key.
- **5.** *Optional*. To enable the external offset, complete the following steps:
 - a. Toggle the External Offset soft key and select On.

- **b.** Enter a value between 0 and 60 by using the numeric keys.
- c. Press the dB soft key.

Setting sweep mode

The default setting of the sweep mode is **Continue**. If you want to hold the measurement, you can change the sweep mode.

Procedure

To select the single sweep mode:

- 1. Press the SWEEP hot key.
- To select the single sweep mode, toggle the Sweep Mode soft key and select Single. You can also use the HOLD hot key.

The letter HOLD in red appears and the sweeping is paused.

3. To return to the continuous sweep mode, toggle the **Sweep Mode** soft key and select **Continue**. You can also use the **HOLD** hot key.

The letter **HOLD** in red disappears and the sweeping resumes.

Making a measurement

- 1. Press the **MEASURE SETUP** hot key.
- 2. Press the **Resolution** soft key, and then select the resolution option from the following choices:
 - 0 to display the reading with no decimal place
 - 1 to display the reading with one decimal place
 - 2 to display the reading with two decimal places
- 3. To set the resolution bandwidth, complete the following steps:
 - a. Press the RBW soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the unit: MHz, kHz, or Hz.
- Press the Accuracy Mode soft key, and then select the accuracy mode option: Low, Middle, and High.
- **5.** To specify the number of measurements to be averaged, complete the following steps:
 - a. Press the Average soft key.
 - **b.** Enter a value between 1 and 100 by using the numeric keys.
 - c. Press the Enter soft key.
- 6. To set a threshold and view the results with Pass/Fail indication, complete the following steps:
 - a. Press the LIMIT hot key.
 - b. Toggle the Limit soft key between On and Off to enable or disable the Pass/Fail indication.
 - **c.** Press the **High Limit** soft key, and then enter a threshold value.
 - d. Press the dBm unit soft key.
 - e. Press the Low Limit soft key, and then enter a threshold value.
 - f. Press the dBm unit soft key.
- 7. Optional. Go to **SAVE/LOAD** > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

Figure 334 Internal power measurement

Performing external RF power measurements

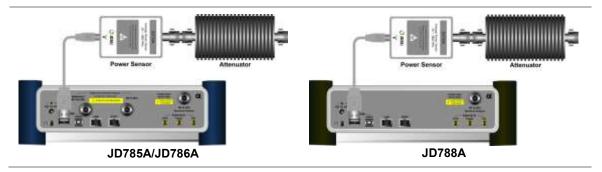
This instrument performs radio output power measurement with the use of optional external power sensors including JD730 series power sensors. It serves as the highly accurate RF power meter and gives wider range of power measurement.

Connecting a cable

There are two types of power sensors. Directional power sensors are used in in-service power measurement. Terminating power sensors are used in out-of-service power measurement.

 Table 23
 External power sensor type

Part No.	Description	Frequency Range	Power Range
JD731B	Directional Power Sensor	300-3800 MHz	Average: +21.76 to +51.76 dBm (0.15 to 150 W) Peak: +36.02 to +56.02 dBm (4 to 400 W)
JD732B	Terminating Power Sensor	20-3800 MHz	Average: -30 to +20 dBm
JD733A	Directional Power Sensor	150-3500 MHz	Average/Peak: +20 to +47 dBm (0.1 to 50 W)
JD734B	Terminating Power Sensor	20-3800 MHz	Peak: -30 to +20 dBm
JD736B	Terminating Power Sensor	20-3800 MHz	Average/Peak: -30 to +20 dBm

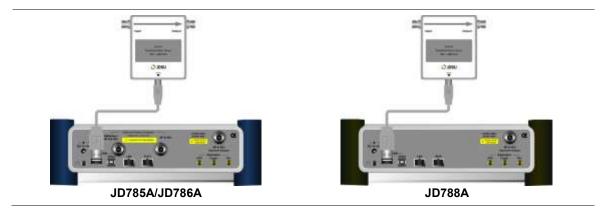

Terminating power sensor connection

Procedure

 Connect an external power sensor to the USB Host port of the JD780A series and to the RF output port of BTS.

The JD780A series automatically detects and initializes the power sensor connected to the instrument. Connecting an external power sensor is mandatory

 Table 24
 Terminating power sensor connection



Directional power sensor connection

Procedure

Connect an external power sensor to the USB Host port of the JD780A series and to the RF output port of BTS as shown in Figure 335.
 The JD780A series automatically detects and initializes the power sensor connected to the instrument. Connecting an external power sensor is mandatory.

Figure 335 Directional power sensor connection

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Select More (1/2) > Power Meter > External RF Power Meter.

Setting frequency

You need to set the frequency to be measured depending on your connected external power sensor.

Procedure

- 1. Press the FREQ/DIST hard key.
- 2. Press the Frequency soft key.
- 3. Enter a value by using the numeric keys. You can also use the rotary knob.
- 4. Select the unit: GHz, MHz, kHz, or Hz.

Setting amplitude

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the **Display** soft key and select the display method: **Relative** or **Absolute**.
- If the Relative is selected, press the Set Reference soft key to set the current value as the reference.
- **4.** To specify the display range, complete the following steps:
 - a. Press the **Display Maximum** soft key to set the maximum value for the power meter.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob.
 - c. Press the dBm soft key.
 - **d.** Press the **Display Minimum** soft key to set the minimum value for the power meter.
 - e. Enter a value by using the numeric keys. You can also use the rotary knob.
 - f. Press the dBm soft key.
- **5.** *Optional.* To enable the external offset, complete the following steps:
 - a. Toggle the External Offset soft key and select On.
 - **b.** Enter a value between 0 and 60 by using the numeric keys.
 - c. Press the dB soft key.

Making a measurement

- 1. Press the **MEASURE** hot key.
- 2. Depending your connected power sensor, do one of the following:
 - For JD736B, select the power range option: Average Power, Peak Power, or Pulse Power.
 - For JD734B, select Peak Power.
 - For JD732B, select Average Power.
 - For JD731B, select the power range option: Forward Avg Power, Reverse Avg Power, Forward Peak Power, Pulse Power, or VSWR.
 - For JD733A, select the power range option: Forward Avg Power, Reverse Avg Power, Forward Peak Power, or VSWR.
- 3. Press the **MEASURE SETUP** hot key.
- 4. Press the **Resolution** soft key, and then select the resolution option from the following choices:
 - 0 to display the reading with no zero decimal place
 - 1 to display the reading with one decimal place

- 2 to display the reading with two decimal places
- 5. To set a threshold and view the results with Pass/Fail indication, complete the following steps:
 - a. Press the LIMIT hot key.
 - b. Toggle the Limit soft key between On and Off to enable or disable the Pass/Fail indication.
 - c. Press the High Limit soft key, and then enter a threshold value.
 - d. Press the dBm unit soft key.
 - e. Press the Low Limit soft key, and then enter a threshold value.
 - f. Press the dBm unit soft key.
- 6. Optional. Go to SAVE/LOAD > Save, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Measurement example

You can measure and understand a trend of a system output in operation where output power constantly varies depending on the amount of calls being processed by the BTS or Repeater. In addition, the Log graph benefits you to easily examine the discontinuance of output power caused by the transmission problems or defective connection.

Figure 336 External power measurement of pulse power

Performing optical power measurements

The optical power measurement is available in conjunction with MP-series power sensor, which measures optical power via a USB connection.

Connecting a power meter

Connecting an external optical power meter is mandatory for power measurements in the Optical Power Meter mode. There are two optical power meters (sensors) those can be connected to the instrument via USB. See "JD780A Series Common Options" on page 642 for the optional power meters.

Procedure

- Connect a MP-series optical power sensor to the USB Host port of the JD780A series as shown in Figure 337.
 - The OPS indicator appears in the system status bar.
- 2. Connect the optical cable from the output port of BTS to the power meter.

Figure 337 Optical power sensor connection

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- Select More (1/2) > Power Meter > Optical Power Meter.
 The Optical Power Meter screen appears.

Setting measurement parameters

- 1. Press the **MEASURE SETUP** hot key.
- 2. To select your desired wavelength for testing, do one of the following:
 - To let your instrument detect the wavelength automatically, toggle the Wavelength soft key and select Auto.
 - To select a wavelength from the wavelength list, complete the following steps:
 - a. Toggle the Wavelength soft key and select Manual.
 - Press the **Stdwave** soft key.
 The wavelength list box appears.
 - **c.** Select the wavelength you want from the list, and then tap the **Apply** button.
- 3. Optional. To edit the wavelength list, complete the following steps:
 - **a.** Press the **Stored Wavelength** soft key. The Stored Wavelength dialog box appears.
 - **b.** Do the following:
 - To add a new wavelength, enter a value between 780 and 1650 in the input box, and then tap the Add button.
 - To edit an existing wavelength, highlight a wavelength in the list, enter a new value between 780 and 1650 in the input box, and then tap the Edit button.
 - To delete an existing wavelength from the list, highlight a wavelength in the list, and then tap the **Delete** button.
 - **c.** Tap the **Apply** button to save your changes.

Making a power measurement

Procedure

- After setting the parameters, read the absolute measurement value in dBm on the screen.
 Figure 338 is an example of the measurement screen. To view a relative power, see "Reading a relative power" on page 605.
- 2. To view the result in mW, complete the following steps:
 - a. Press the AMP/SCALE hard key.
 - b. Press the Units soft key, and then select mW.
- 3. To set a threshold and view the result with Pass/Fail indication, complete the following steps:
 - a. Press the LIMIT hot key.
 - b. Toggle the Threshold soft key between On and Off to enable or disable the Pass/Fail indication.
 - **c.** Press the **Threshold** soft key, and then enter a value.
 - d. Press the dBm unit soft key.
 - e. Toggle the Alarm soft key between On and Off to enable or disable alarming.
- **4**. *Optional*. Go to *SAVE/LOAD* > **Save**, and then select the save option from the choices available for your measurement mode. See "Using save" on page 33 for more information.

Figure 338 optical power measurement

NOTE

If the Wavelength is set to Auto, it displays "Auto" for the modulation frequency. It it is set to Manual, the instrument displays a detected modulation frequency.

Reading a relative power

To view a relative power in dB, you can set a reference value automatically or manually.

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the **Display** soft key and select **Relative**.
- 3. Do one of the following:

- To let the instrument set the last measurement as a reference, complete the following steps:
 - a. Toggle the Relative Reference soft key and select Last.
 - b. Press the Reference Last soft key.

NOTE

To set or release reference, you can also press and hold the physical round button on the connected MP-series power meter for a few seconds until you hear a beep.

- To set the reference manually, complete the following steps:
 - a. Toggle the Relative Reference soft key and select Manual.
 - b. Press the Reference Manual soft key.
 - c. Enter a value manually as you desire, and then press the Enter soft key.

Holding a measurement

- To hold the measurement, press the HOLD hard key. Measurement is paused and the text "Hold" appears.
- To resume the measurement, press the HOLD hard key again. Measurement is resumed and the text "Hold" disappears.

Performing Fiber Inspection

This chapter provides instructions for using the fiber testing function with a P5000i fiberscope. Topics discussed in this chapter are as follows:

	Introduction	.608
-	Display overview	.608
-	Connecting a fiber microscope	.608
	Selecting measurement mode	.609
	Configuring test parameters	.609
	Performing fiber inspection	.610

Introduction

Inspection of fiber optic connections is essential for the optimal performance and longevity of fiber optic connectivity. Throughout their lives, fiber connectors must be inspected, analyzed, and cleaned to maintain an acceptable level of functionality. The JD780A series makes it fast and easy to troubleshoot and certify that every connection at a cell site is optimized for a lifetime of performance.

The JD780A series supports the handheld fiber microscope P5000i that can capture video images from the sensor and analyzes the images for fiber end face defects and contamination with reliable PASS/FAIL results to guarantee the performance of your optical connections.

Display overview

Figure 331 provides descriptions for each segment of the measurement screen.

Figure 339 Fiber inspection screen

Connecting a fiber microscope

Connecting an optional fiber microscope P5000i is mandatory for fiber inspection and analysis. See "JD780A Series Common Options" on page 642 for available options.

Procedure

1. Connect your fiber microscope P5000i to the **USB Host** port of the JD780A series. The instrument detects the connected microscope automatically and displays the icon.

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- 2. Select More (1/2) > Fiber Inspection.

Configuring test parameters

Selecting profile and tip

You can select analysis profiles and inspection tips from the list.

Procedure

- 1. Press the MEASURE SETUP hot key.
- Press the Profile & Tip soft key. The profile and tip pane appears.
- 3. To select one of the pre-configured analysis profiles that match the PASS/FAIL criteria in the IEC visual inspection standard, complete the following steps:
 - a. Tap the drop-down list button for the Profile.
 - **b.** Select the profile that you want to use, from the following choices:
 - MM (IEC-61300-3-35)
 - Ribbon, MM (IEC-61300-3-35)
 - Ribbon, SM APC (IEC-61300-3-35)
 - SM APC (IEC-61300-3-35)
 - SM PC (IEC-61300-3-35)
 - SM UPC (IEC-61300-3-35)

All of the profiles are factory set and cannot be edited or removed.

- 4. To select the inspection tip (optical settings) that you want to use, complete the following steps:
 - a. Tap the drop-down list button for the Tip.
 - **b.** Select one of the tips available to your selected profile, from the following choices:
 - Standard Tips (with BAP1) and Simplex Long Reach (-L) Tips
 - Ribbon Tips and Ribbon Tips Long Reach

This setting allows you to select the best optical settings for the type of inspection tip that is attached to your microscope probe.

5. Tap the **Apply** button or press the **Apply** soft key to save and return to the previous state.

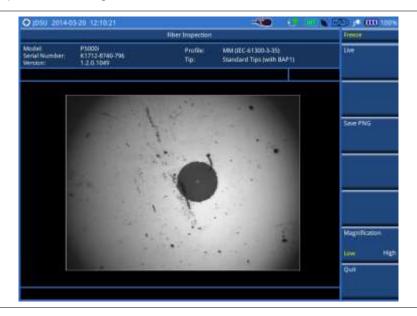
Setting preferences

You can set your preferences of auto center and QuickCapture button function. The QuickCapture button is the small grey round button on the side of the microscope.

- 1. To set the function of the QuickCapture button on the side of the P5000i, toggle the **Test Button** soft key and select the option from the following choices:
 - Test: Sets the capture button to function as Test. Pressing the Quickcapture button analyzes fiber image as like the Test soft key on your JD780A series.

- Freeze: Sets the capture button to function as Freeze. Pressing the Quickcapture button captures fiber image as like the Freeze soft key on your JD780A series.
- To turn the auto center feature on or off, toggle the Auto Center soft key between On and Off
 and select the option you want to set. Default setting is On. It automatically displays the center of
 the fiber when viewing at high magnification.

Performing fiber inspection


Capturing fiber image

Procedure

- Connect the fiber to be inspected to the tip of your microscope P5000i.
 The live image of the fiber is displayed on the screen.
 See the user manual of your fiber microscope for details on using the P5000i.
- 2. Focus the image by rotating the Focus Control on the P5000i until the image is in focus.
- Toggle the Magnification soft key between Low and High and select the option you want to use. You can also press the Magnification Control button on either side of the P5000i.
- **4.** Press the **Freeze** soft key to capture the properly focused image. The text "Capturing..." appears.
- **5.** Optional. To save the captured image as a file (.png), complete the following steps:
 - Tap the Save PNG soft key.
 The Save window appears with the on-screen key.
 - b. Type a file name in the File Name field.
 - c. Select a folder where you want to save the file, if desired.
 - d. Press the Save soft key.
- 6. Press the Live soft key to return to the live image screen or press the Quit soft key to exit.

Measurement example

Figure 340 Captured fiber image

Testing a fiber

- Connect the fiber to be inspected to the tip of your microscope P5000i.
 The live image of the fiber is displayed on the screen.

 See the user manual of your fiber microscope for details on using the P5000i.
- 2. Focus the image by rotating the Focus Control on the P5000i until the image is in focus.
- Toggle the Magnification soft key between Low and High and select the option you want to use. You can also press the Magnification Control button on either side of the P5000i.
- **4.** Press the **Test** soft key to start fiber analysis. The text "Analyzing..." appears.
- 5. Once the test is completed, check the result displayed on the screen with the following information:
 - Image overlay of the zone locations, defects, and scratches
 - PASS or FAIL result
 - Specific test result for each zone
- **6.** To show or hide image overlays, press the **Overlay** soft key. Each time this key is pressed, the selection changes.
- 7. Optional. To save the fiber inspection result with specific details as a report (.pdf), complete the following steps:
 - Tap the Save PDF soft key.
 The Save window appears with the on-screen key.
 - b. Type a file name in the File Name field.
 - c. Select a folder where you want to save the file, if desired.
 - d. Press the Save soft key.The information input window appears.
 - e. Type in information as required.
 - f. Tap the Apply button or press the Apply soft key to save and return to the previous state.
- 8. Press the **Live** soft key to return to the live image screen or press the **Quit** soft key to exit the fiber inspection.

Measurement example

Figure 341 Analyzed fiber image and fiber inspection result

Figure 342 Fiber inspection report

Using EMF Analyzer

This chapter provides instructions for using the EMF Analyzer function (option 050). Topics discussed in this chapter are as follows:

Introduction	614
Display overview	614
Connecting an isotropic antenna	614
Selecting measurement mode	615
Configuring test parameters	615
Conducting EMF spectrum measurements	619
Recording and replaying EMF logging data	621

Introduction

Base stations emit electro-magnetic fields (EMF) of high frequency, which varies between wireless technologies and countries. As personal exposure to high frequency fields from base stations can provoke health effect, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has provided general guidelines on limitations regarding high frequency exposure. Using the EMF Analyzer in JD780A series with an isotropic antenna connected, you can now measure the level of EMF onsite in the field in order to verify if the level of emission from of your base station is compliant with the guidelines.

The JD780A series is the solution to perform following measurement and analysis:

- EMF Spectrum
- EMF Replayer

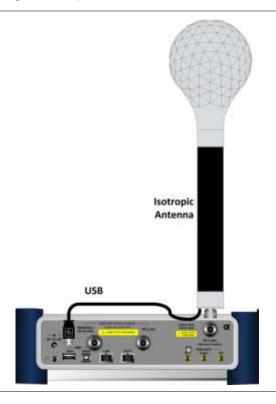
Display overview

Figure 343 provides overview of each segment of the measurement screen.

System settings, global positioning information, and indicators Measurement mode 1.650 000 000 GH Input settings Pass/fail User input field indicator 109,7 104.7 99.7 Measurement Screen settings menus # of Meanicema Trace legend Measurement result

Figure 343 EMF Spectrum measurement screen

Connecting an isotropic antenna


In the EMF Analyzer mode, connecting an isotropic antenna is mandatory and the part number is G700050380. Using this isotropic antenna, you can make three-dimensional measurements.

Procedure

1. Connect the RF Type-N connector of the isotropic antenna to the RF In port of the instrument.

Connect the USB plug of the isotropic antenna to the USB Host port of the JD780A series. The device icon appears in the system status bar on the screen.

Figure 344 Connection using an isotropic antenna

CAUTION

The maximum power for the **Spectrum Analyzer RF In** port is +25 dBm (0.316 W).

Selecting measurement mode

Procedure

- 1. Press the MODE hard key.
- Press the More (1/2) soft key and then the EMF Analyzer soft key.
 This menu is activated only after you have not installed the license on your CellAdvisor.
- Press the MEASURE hot key, and then select the measurement mode from the following choices:
 - EMF Spectrum
 - EMF Replayer

Configuring test parameters

Setting frequency

You need to set the frequency range to be measured with either the center frequency/span or the start/stop frequencies. You can also set the frequency with the channel number and span.

Procedure

To set the center frequency and span:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. To set the center frequency, complete the following steps:
 - a. Press the Center Frequency soft key.
 - b. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - c. Select the unit from the choices: GHz, MHz, kHz, and Hz.
- 4. To set the span frequency, complete the following steps:
 - a. Press the Span soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - c. Select the unit from the choices: GHz, MHz, kHz, and Hz.

To set the start and stop frequencies:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Freq.
- 3. To set the start frequency, complete the following steps:
 - a. Press the Start Frequency soft key.
 - b. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - c. Select the unit from the choices: GHz, MHz, kHz, and Hz.
- 4. To set the stop frequency, complete the following steps:
 - a. Press the Stop Frequency soft key.
 - **b.** Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
 - c. Select the unit from the choices: GHz, MHz, kHz, and Hz.
- **5.** *Optional*. To define the amount of frequency increment for the rotary knob:
 - a. Press the Frequency Step soft key, if the Freq is selected.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the unit: GHz, MHz, kHz, or Hz.

To set the channel number and span:

- 1. Press the FREQ/DIST hard key.
- 2. Toggle the Unit soft key and select Channel.
- 3. To select the standard channel, complete the following steps:
 - a. Press the Channel Std soft key. The standard channel window appears. See "Appendix C – Band, frequency & channel standard" on page 628 for more information.
 - b. Highlight the band to be measured by using the rotary knob, the arrow keys, or the Page Up/Page Down soft keys.
 - **c.** Press the **Select** soft key or the rotary knob to confirm the selection.
- Toggle the Link soft key to select the sweep direction and select Fwd (forward) or Rev (reverse) as you desire.
- 5. To set the channel number, complete the following steps:
 - a. Press the Channel Number soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key or ENTER hard key to complete the entry. The instrument automatically displays the corresponding center frequency value for the selected channel number.
- **6.** To set the span frequency, complete the following steps:
 - a. Press the Span soft key.

- b. Enter a value by using the numeric keys. You can also use the rotary knob or the arrow keys.
- c. Select the unit from the choices: GHz, MHz, kHz, and Hz.
- 7. Optional. To define the amount of channel increment for the rotary knob:
 - a. Press the Channel Step soft key, if the Channel is selected.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

Setting amplitude

Reference level and attenuation

You can set the reference and attenuation levels automatically or manually to optimize the display of the traces measured, as you desire.

Procedure

To automatically set the reference and attenuation level:

- 1. Press the AMP/SCALE hard key.
- Press the Auto Scale soft key.
 Each time you press this key, both of the Y-axis scale and input attenuation level change to be optimized with some margin.

To set the reference or attenuation level manually:

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference level on the Y-axis manually, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob.
 - **c.** Press your desired unit soft key from the available choices, which vary depending on your selection of the unit in the **Units** setting.
- 3. To set the input attenuation level, select one from the following choices:
 - To set the input attenuator's level automatically, select Attenuation > Auto.

NOTE

It is recommended that you set the **Attenuation** to **Auto** in most situations so that the level of the input attenuator can be set automatically according to your input signal level.

- To set the input attenuation manually up to 55 dB to optimize S/N, complete the following steps:
 - a. Select Attenuation > Manual.
 - **b.** Press the **Attenuation Value** soft key to set the level.
 - **c.** Enter a value in fives by using the numeric keys.
 - **d.** Press the **dB** soft key or the **ENTER** hard key.

To change the scale unit:

- 1. Select More (1/2) > Units.
- Select the unit of the display scale: dBμV/m, dBmV/m, dBV/m, V/m, Watt/m², dBm/m², dBW/m², A/m, dBA/m, and Watt/cm².
 - The scale unit on the screen changes accordingly.

Pre-amplifier

You can turn on the internal pre-amplifier to correct and compensate for the gain of the preamplifier so that amplitude readings show the values at the input connector.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the Preamp soft key and select On or Off as needed.

NOTE

You can turn on the Preamp when the input attenuation range is from 0 dB to 10 dB. If the attenuation value is manually set to greater than 10 dB, the instrument will automatically turn off the pre-amplifier to display low-level signal properly on the chart.

External offset

You can turn on the External Offset and manually set the external offset value.

Procedure

To set the external offset:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select On.
- 3. Enter a value by using the numeric keys.
- Press the dB soft key to complete the entry.

To turn the external offset off:

- 1. Press the AMP/SCALE hard key.
- 2. Toggle the External Offset soft key and select Off.

Scale per division

You can use the **Scale/Div** feature available for the spectrum measurement screen. It represents the value of one division on the horizontal scale. The default setting is 10 dB per division and the maximum value can be set up to 20 dB.

Procedure

To set the scale per division:

- 1. Press the AMP/SCALE hard key.
- 2. Select More (1/2) > Scale/Div.
- 3. Enter a value between 1 and 20 by using the numeric keys.
- 4. Press the dB soft key to complete the entry.

Setting bandwidth

You can set the Resolution Bandwidth (RBW) and Video Bandwidth (VBW) manually or automatically. Selecting **Auto** changes the value to correspond to your frequency span setting for RBW and VBW.

Procedure

To automatically set the RBW and VBW:

- 1. Press the BW/AVG hard key.
- 2. Toggle the RBW soft key and select Auto.
- 3. Toggle the **VBW** soft key and select **Auto**.

The RBW or VBW value on the screen changes accordingly based on the span.

To manually set the RBW or VBW:

- Press the BW/AVG hard key.
- 2. Press the RBW soft key.
- 3. Enter a value in 1-3 sequence by using the numeric keys.
- Select the unit from the choices: MHz, kHz, and Hz. The RBW setting automatically changes to Manual.
- 5. Press the VBW soft key.
- **6.** Enter a value by using the numeric keys.
- Select the unit from the choices: MHz, kHz, and Hz.
 The VBW setting automatically changes to Manual.
 The RBW or VBW value on the screen changes accordingly.

Conducting EMF spectrum measurements

After you have configured test parameters as described in the "Configuring test parameters" on page 615, you can start your EMF measurements. If you log your measurement, you can play back using the EMF Replayer. For more information on saving logging data, see "Logging EMF spectrum data" on page 621.

Procedure

- 1. Press the **MEASURE SETUP** hot key.
- To specify the amount of measurement time that you want the instrument to stay for on each axis:
 - a. Press the Dwell Time soft key.
 - b. Enter a value in seconds between one and 60.
 - c. Press the unit soft key or the ENTER hard key.
- 3. To specify the amount of measurement time that you want the instrument to stay for on all three axes in order to display current and accumulated EMF power:
 - a. Press the Measurement Time soft key.
 - b. Enter a value in minutes or in seconds. You can set this up to 30 minutes.
 - c. Select the unit from the choices: Minute and Second.

NOTE

The Isotropic EMF Power is the current or the latest average power measured with three axes for the specified dwell time for the axis while the Accumulated Isotropic EMF Power is the average, maximum, and minimum power taken from the number (n) times of measurements.

- 4. To specify the number of EMF measurements that you want to make:
 - a. Press the # of Measurement soft key.
 - **b.** Enter a value. Depending on your settings for Dwell Time and Measurement Time, you can set this up to 600.
 - c. Press the Enter soft key or the ENTER hard key.

NOTE

The dwell time, measurement time, and number of measurement are correlated based on the equation of "# of Measurement = Measurement Time / (Dwell Time x 3)". For example, if you set the Dwell Time to 60 seconds and the Measurement Time to 30 minutes, you can enter "10" for the # of Measurement".

- To start the measurement, toggle the **Measurement** soft key and select **On**.
 The instrument displays measurement results on the screen. **Figure 345** is an example.
- 6. To hold the display, press the HOLD hot key.
- 7. To release the display, press the **HOLD** hot key again.

- 8. To stop the measurement, toggle the Measurement soft key and select Off.
- 9. To clear current display and start new measurement, press the **Restart** soft key.

Figure 345 EMF spectrum measurement with EMF analyzer

Setting trace

You can display up to six traces on the measurement chart simultaneously.

Procedure

- 1. Press the TRACE/DISPLAY hard key.
- 2. Press the **Select Trace** soft key, and then select the trace number from the following choices:
 - T1: Current EMF Trace
 - T2: EMF Trace of X-axis
 - T3: Isotropic EMF Trace
 - T4: EMF Trace of Y-axis
 - T5: Accumulated Isotropic EMF Trace
 - T6: EMF Trace of Z-axis

The legend shape of the selected trace changes from square to round to indicate that the trace is the active one now.

3. Toggle the **Trace View** soft key between **On** and **Off** and select **On** to show the selected trace on the display or **Off** to hide it from the display.

Setting limit

You can set three different limits to analyze the results, as you desire.

Procedure

To set the display line:

1. Press the *LIMIT* hot key.

- Toggle the Display Line soft key and select On. The straight horizontal line appears to be used as a visual reference only.
- 3. Press the Display Line soft key, and then enter a value that you want to set as a reference.
- **4.** Select your desired unit soft key from the available choices, which vary depending on your selection of the unit in the **Units** setting in Amp/Scale.

To set the multiple segment line:

- 1. Press the LIMIT hot key.
- 2. Press the Multi Segment Line soft key for Pass/Fail indication.
- 3. Toggle the Limit soft key between Upper and Lower to select the one to be displayed.
- 4. Set the number of segments for the selected upper or lower limit line, up to 50 segments.
 - a. Press the # of Line soft key.
 - **b.** Enter a value between 1 and 50 by using the numeric keys.
 - c. Press the Enter soft key.
- 5. Press the Autoset soft key to let the instrument set the limit for each segment and display the line
- **6.** Optional. To move the limit line, complete the following steps:
 - a. Select Limit Up/Down or Limit Left/Right.
 - b. Turn the rotary knob to move the line as desired. You can also manually enter a value.
- 7. Optional. To edit the segment properties, complete the following steps:
 - a. Press the Edit Limit soft key.
 - b. Press the Move soft key and then turn the rotary knob to select the segment to edit.
 - **c.** Select the menu option, from the following choices:
 - To hide the line for the selected segment, toggle the **Line** soft key and select **Off**.
 - To add a new point, press the Add Point soft key.
 - To delete the selected point, press the **Delete Point** soft key.
 - To change the position, press the **Frequency** or **Amplitude** soft key, and then turn the rotary knob to change the value as desired.
- **8.** Optional. Go to **SAVE/LOAD > Save**, and then select **Save Limit** to save the limit settings. See "Using save" on page 33 for more information.

To set the ICNIRP limit:

- 1. Press the LIMIT hot key.
- Toggle the ICNIRP Limit soft key between On and Off and select On to show a reference line for the set span frequency range based on the ICNIRP guidelines or Off to hide the line from the display.

Recording and replaying EMF logging data

Logging EMF spectrum data

You can record EMF spectrum measurement as a logging file in .grr file type so that you can play it back in the spectrogram chart view for data analysis.

Procedure

- 1. Press the SAVE/LOAD hot key.
- 2. Select the Save soft key.
- 3. Select the Save Logging Data soft key. The on-screen keyboard appears.
- 4. Type the name of the file in the File Name field.

NOTE

In is recommended that you use an external USB memory drive to save logging data in order to have enough free space.

- **5.** Press the **Save** soft key to start logging. The "Recording" appears on the screen.
- 6. Press the ESC hard key to stop logging data and complete saving.

Replaying EMF spectrum data

If you have recorded logging data in the EMF Spectrum mode, you can load the saved data in the EMF Replayer mode and view them in the spectrogram chart for your analysis.

Loading a saved logging file

Procedure

- 1. In the EMF Analyzer mode, press the **MEASURE** hot key.
- 2. Press the EMF Replayer soft key. The file explorer window appears.
- 3. Navigate to the .grr file that you have saved in the EMF Spectrum mode.

NOTE

In the File Information pane, you can find the properties of the file that you want to open. If the selected logging data have been saved in a measurement mode other than EMF Spectrum, the instrument will display an error message at the bottom of the window.

4. Press the Load soft key. The EMF Replayer window appears with the upper spectrogram chart and the lower spectrum chart. The spectrum chart displays two traces: isotropic trace and isotropic average trace.

Changing play options

Procedure

- 1. Press the **MEASURE** hot key.
- Toggle the Replay Direction soft key between FWD and REV to change play direction to forward or reverse.
- 3. Press the Replay Speed soft key, and then select the speed option: x1, x2, x3, and x4.
- 4. Press the Play soft key to start playing the recorded logging data.
- 5. Press the Pause soft key to pause or stop playing the recorded logging data.
- 6. To move to a particular failure position directly and play from there, complete the following steps:
 - a. Press the Jump to Fail Index soft key.
 - **b.** Enter a value by using the numeric keys.
 - c. Press the Enter soft key.

NOTE

If you connected a USB drive, do not remove it while playing. Doing so may freeze the USB port, which will require you to restart the instrument to get a USB drive recognized again.

Changing amplitude settings

You can change the reference level, scale per division, and units to optimize the display of the recorded data while replaying, as you desire.

Procedure

- 1. Press the AMP/SCALE hard key.
- 2. To set the maximum reference level on the Y-axis, complete the following steps:
 - a. Press the Reference Level soft key.
 - **b.** Enter a value by using the numeric keys or the rotary knob with 10 dB increments.
 - **c.** Press your desired unit soft key from the choices, which vary depending on your selection of the unit in the **Units** setting.
- 3. To change the scale unit, select **Units** and then select the unit of the display scale from the choices: dBμV/m, dBmV/m, dBV/m, V/m, Watt/m^2, dBm/m^2, dBW/m^2, A/m, dBA/m, and Watt/cm^2.

The scale unit on the screen changes accordingly.

Topics discussed in this chapter are as follows:

	Appendix A – Product general information	.625
-	Appendix B – Cable list	.627
	Appendix C – Band, frequency & channel standard	.628
-	Appendix D – VSWR-Return loss conversion table	.631
-	Appendix E – Cyclic prefix table	.632
-	Appendix F – Motorola CDMA/EV-DO LMF	.633
-	Appendix G – Bluetooth connection	.635
	Appendix H – Device driver installation	.638
-	Appendix I – Ordering information	.639
-	Appendix J – RoHS information	.645
-	Appendix K – On-screen keyboard	.646
	Annendix I. – Supported man display parameters	649

Appendix A – Product general information

	JD785A/JD786A	JD788A	Supplemental Information
Inputs and Outputs			
RF In Connector Impedance Damage Level	Type-N female 50 Ω >+33 dBm, >±50 V DC	Type-N female 50 Ω >+33 dBm, >±50 V DC	Spectrum Analyzer Nominal Nominal
Reflection/RF Out Connector	Type-N female	Type-N female	Cable and Antenna Analyzer
Impedance Damage Level	50 Ω >+40 dBm, >±50 V DC	50 Ω >+40 dBm, >±50 V DC	Nominal Nominal
RF In Connector Impedance Damage Level	Type-N female 50 Ω >+25 dBm, >±50 V DC	N/A N/A N/A	Nominal Nominal
External Trigger, GPS	>+23 ubili, >±30 v DC	NA	Nottiliai
Connector Impedance	SMA female 50 Ω	SMA female 50 Ω	Nominal
External Ref Connector Impedance Input Frequency Input Range	SMA female 50 Ω 10, 13, 15 MHz -5 to +5 dBm	SMA female 50 Ω 10, 13, 15 MHz -5 to +5 dBm	Nominal
USB USB Host USB Client	Type A, 1 port Type B, 1 port	Type A, 1 port Type B, 1 port	
LAN	RJ45, 10/100 Base-T	RJ45, 10/100 Base-T	
E1/T1	RJ45	N/A	Available in JD785A
GPIO	N/A	RJ45	Available in JD786A and JD788A
Audio Jack	3.5 mm headphone jack	3.5 mm headphone jack	
External Power	5.5 mm barrel connector	5.5 mm barrel connector	
Speaker	Built-in speaker	Built-in speaker	
Display			
Туре	Resistive touch	Resistive touch	
Size	screen 8"	screen 8"	LCD backlight, transflective LCD with anti-glare coating
Resolution	800 x 600	800 x 600	

	JD785A/JD786A	JD788A	Supplemental Information
Power			
External DC Input Power Consumption	18 V DC 37 W	18 V DC 37 W	49 W maximum when charging battery
Battery			
Operating Time Charge Time Storage Temperature	10.8 V, 7800 mA-h > 3 hours (Typical) 2.5 hours (80 %) 5 hours (100 %) 0 to 25°C (32 to 77°F)	10.8 V, 7800 mA-h > 3 hours (Typical) 2.5 hours (80 %) 5 hours (100 %) 0 to 25°C (32 to 77°F)	Lithium Ion In balance mode In case of a fully discharged battery The battery pack should be stored in an environment with low humidity. Extended exposure to temperature above 45°C could degrade battery performance and life.
Data Storage			
Internal External	Maximum 100 MB Limited to the size of USB flash drive	Maximum 100 MB Limited to the size of USB flash drive	Up to 3800 traces Supports USB 2.0 compatible memory devices
Environmental			
Operating Temperature AC Power Battery	0 to 40°C (32 to 104°F) 0 to 40°C (32 to 104°F) -10 to 55 °C	0 to 40°C (32 to 104°F) 0 to 40°C (32 to 104°F) -10 to 55 °C	With no derating At charging At discharging
Maximum Humidity Shock and Vibration	(14 to 131 °F) 95% RH MIL-PRF-28800F Class 2	(14 to 131 °F) 95% RH MIL-PRF-28800F Class 2	Non-condensing
Storage Temperature	-30 to 71°C (-22 to 160°F)	-30 to 71°C (-22 to 160°F)	With the battery pack removed
EMC			
	IEC/EN 61326-1:2006 CISPR11:2009+A1:2010	IEC/EN 61326-1:2006 CISPR11:2009+A1:2010	Complies with European EMC
ESD	IEC/EN 61000 4.3	IEC/EN 61000 4 3	
	IEC/EN 61000-4-2	IEC/EN 61000-4-2	
Size and Weight (Standard			
Weight	<4.3 kg (9.5 lb.)	<3.9 kg (8.6 lb.)	With battery
Size	295 x 195 x 82 (mm) 11.6 x 7.7 x 3.2 (Inch)	295 x 195 x 82 (mm) 11.6 x 7.7 x 3.2 (Inch)	Approximately (W x H x D)
Warranty			
	3 years	3 years	
Calibration Cycle			
	1 year	1 year	

Appendix B – Cable list

Cable Type	Relative Propagation Velocity (V¦)	Nominal Attenuation dB/m @ 1000 MHz
FSJ1-50A	0.84	0.197
FSJ250	0.83	0.134
FSJ4-50B	0.81	0.119
HCC 12-50J	0.915	0.092
HCC 158-50J	0.95	0.023
HCC 300-50J	0.96	0.014
HCC 312-50J	0.96	0.013
HCC 78-50J	0.915	0.042
HF 4-1/8" Cu2Y	0.97	0.01
HF 5" Cu2Y	0.96	0.007
HF 6-1/8"Cu2Y	0.97	0.006
HJ4.5-50	0.92	0.054
HJ4-50	0.914	0.087
HJ5-50	0.916	0.042
HJ7-50A	0.921	0.042
LDF12-50		
	0.88	0.022
LDF4-50A	0.88	0.077
LDF5-50A	0.89	0.043
LDF6-50	0.89	0.032
LDFF7-50A	0.88	0.027
LMR100	0.8	0.792
LMR1200	0.88	0.044
LMR1700	0.89	0.033
LMR200	0.83	0.344
LMR240	0.84	0.262
LMR400	0.85	0.135
LMR500	0.86	0.109
LMR600	0.87	0.087
LMR900	0.87	0.056
RG142	0.69	0.443
RG17, 17A	0.659	0.18
RG174	0.66	0.984
RG178B	0.69	1.509
RG187, 188	0.69	1.017
RG213/U	0.66	0.292
RG214	0.659	0.292
RG223	0.659	0.165
RG55, 55A, 55B	0.659	0.541
RG58, 58B	0.659	1.574
RG58A, 58C	0.659	0.787
RG8, 8A, 10, 10A		
	0.659	0.262
RG9, 9A	0.659	0.289
HFSC-12D(1/2")	0.81	0.112
HFC-12D(1/2")	0.88	0.072
HFC-22D(7/8")	0.88	0.041
HFC-33D(1_1/4")	0.88	0.0294
HFC-42D(1_5/8")	0.87	0.0243
RFCX-12D(1/2")	0.88	0.088
RFCX-22D(7/8")	0.88	0.049
RFCX-33D(1_1/4")	0.88	0.038
RFCX-42D(1_5/8")	0.87	0.028
RFCL-22D(7/8")	0.88	0.044
RFCL-33D(1_1/4")	0.88	0.034
RFCL-42D(1 5/8")	0.87	0.0315

Appendix C – Band, frequency & channel standard

	Uplink			Downlink		
Standard	Start Freq (MHz)	Stop Freq (MHz)	Valid Channels	Start Freq (MHz)	Stop Freq (MHz)	Valid Channels
GSM		· , · ,		· · · · ·	• • •	
GSM 450	450.40	457.60	259≤n≤293	460.40	467.60	259≤n≤293
GSM 480	478.80	486.00	306≤n≤340	488.80	496.00	306≤n≤340
GSM 850	824.00	849.00	128≤n≤251	869.00	894.00	128≤n≤251
P-GSM 900	890.00	915.00	1≤n≤124	935.00	960.00	1≤n≤124
			0≤n≤124			0≤n≤124
E-GSM 900	880.00	915.00	975≤n≤1023	925.00	960.00	975≤n≤1023
R-GSM 900	876.00	915.00	0≤n≤124	921.00	960.00	0≤n≤124
R-GSM 900 (China)	885.00	889.00	955≤n≤1023 999≤n≤1019	930.00	934.00	955≤n≤1023 999≤n≤1019
DCS 1800	1710.00	1785.00	512≤n≤885	1805.00	1880.00	512≤n≤885
PCS 1900	1850.00	1910.00	512≤n≤810	1930.00	1990.00	512≤n≤810
	1830.00	1510.00	312313010	1550.00	1550.00	3123113010
CDMA		I	1/n/700		1	1/2/700
Band 0 (800)	824.00	849.00	1≤n≤799 991≤n≤1023	869.00	894.00	1≤n≤799 991≤n≤1023
Band 1 (NA PCS)	1850.00	1910.00	0≤n≤1199	1930.00	1990.00	0≤n≤1199
· ·			0≤n≤1000			0≤n≤1000
Band 2 (TACS)	872.0125	914.9875	1329≤n≤2047	917.0125	959.9875	1329≤n≤2047
			1≤n≤799			1≤n≤799
			801≤n≤1039	-		801≤n≤1039
Band 3 (JTACS)	887.0125	924.9875	1041≤n≤1199	832.0125	869.9875	1041≤n≤1199
			1201≤n≤1600	-		1041≤N≤1199 1201≤n≤1600
Dand 4 (KD DCC)	1750.00	1790.00		1940.00	1970.00	
Band 4 (KR PCS)	1750.00	1780.00	0≤n≤599 1≤n≤300	1840.00	1870.00	0≤n≤599 1≤n≤300
	411.675		539≤n≤871	-		539≤n≤871
Band 5 (450)		483.480	1039≤n≤1473	421.6750	493.4800	1039≤n≤1473
			1792≤n≤2016			1792≤n≤2016
Band 6 (2100)	1920.00	1980.00	0≤n≤1199	2100.00	2170.00	0≤n≤1199
Band 7 (700)	776.00		 	746.00	764.00	
· ,	+	794.00	0≤n≤359			0≤n≤359
Band 8 (1800)	1710.00	1784.95	0≤n≤1499	1805.00	1879.95	0≤n≤1499
Band 9 (900)	880.00	914.95	0≤n≤699 0≤n≤719	925.00	959.95	0≤n≤699 0≤n≤719
Band 10 (2nd 800)	806.000	900.975	720≤n≤919	851.000	939.975	720≤n≤919
WCDMA		I .	7202112313	I.	I .	7202112313
Band Global						
Band 1 (2100-General)	1920.0	1980.0	9612≤n≤9888	2110.0	2170.0	10562≤n≤10838
Band 2 (1900-General)			9262≤n≤9538			9662≤n≤9938
Band 2 (1900-Additional)	1850.0	1910.0	12≤n≤287	1930.0	1990.0	412≤n≤687
Band 3 (1800-General)	1710.0	1780.0	937≤n≤1288	1805.0	1880.0	1162≤n≤1513
Band 4 (1700-General)			1312≤n≤1513			1537≤n≤1738
Band 4 (1700-Additional)	1710.0	1775.0	1662≤n≤1862	2110.0	2155.0	1887≤n≤2087
Band 5 (850-General)			4132≤n≤4233			4357≤n≤4458
Band 5 (850-Additional)	824.0	849.0	782≤n≤862	869.0	894.0	1007≤n≤1087
Band 6 (800-General)			4162≤n≤4188			4387≤n≤4413
Band 6 (800-Additional)	830.0	840.0	812≤n≤837	875.0	885.0	1037≤n≤1062
Band 7 (2600-General)			2012≤n≤2338			2237≤n≤2563
Band 7 (2600-Additional)	2500.0	2570.0	2362≤n≤2687	2620.0	2690.0	2587≤n≤2912
Band 8 (900-General)	880.0	915.0	2712≤n≤2863	925.0	960.0	2937≤n≤3088
Band 9 (1700-General)				 		
	1749.9	1784.9	8762≤n≤8912	1844.9	1879.9	9237≤n≤9387
Band 10 (1700-General) Band 10 (1700-Additional)	1710.0	1770.0	2887≤n≤3163 3187≤n≤3462	2110.0	2170.0	3112≤n≤3388 3412≤n≤3687
Band 11 (1500-General)	1427.9	1447.9	3487≤n≤3562	1475.9	1495.9	3712≤n≤3787
Band 12 (700-General)	1727.3	1447.5	3617≤n≤3678	1473.3	1455.5	3842≤n≤3903
Band 12 (700-Additional)	699.0	716.0	3707≤n≤3767	729.0	746.0	3932≤n≤3992
· · · · · · · · · · · · · · · · · · ·			3792≤n≤3818			4017≤n≤4043
Band 13 (700-General) 777.0		787.0		746.0	756.0	
Band 13 (700-Additional)			3842≤n≤3867		,30.0	4067≤n≤4092
Band 14 (700-General)	788.0	798.0	3892≤n≤3918	758.0	768.0	4117≤n≤4143
Band 14 (700-Additional)			3942≤n≤3967			4167≤n≤4192
Band 19 (800-General)	830.0	845.0	312≤n≤363	875.0	890.0	712≤n≤763
Band 19 (800-Additional)	222.5	000.0	387≤n≤437	704.3	624.6	787≤n≤837
Band 20 (800-General)	832.0	862.0	4287≤n≤4413	791.0	821.0	4512≤n≤4638

Band 21 (1500-General)	1447.9	1462.9	462≤n≤512	1495.9	1510.9	862≤n≤912
Band 22 (3500-General)	3410.0	3490.0	4437≤n≤4813	3510.0	3590.0	4662≤n≤5038
Band 25 (1900-General)	1950.0	1015.0	4887≤n≤5188	1020.0	1995.0	5112≤n≤5413
Band 25 (1900-Additional)	1850.0	1915.0	5212≤n≤5512	1930.0	1995.0	5437≤n≤5737
Band 26 (800-General)	044.0	040.0	5537≤n≤5688	050.0	0040	5762≤n≤5913
Band 26 (800-Additional)	814.0	849.0	5712≤n≤5862	859.0	894.0	5937≤n≤6087
LTE - FDD		·	'			
Band Global						
Band 1 (2100)	1920.0	1980.0	18000≤n≤18599	2110.0	2170.0	0≤n≤599
Band 2 (1900)	1850.0	1910.0	18600≤n≤19199	1930.0	1990.0	600≤n≤1199
Band 3 (1800)	1710.0	1785.0	19200≤n≤19949	1805.0	1880.0	1200≤n≤1949
Band 4 (1700)	1710.0	1755.0	19950≤n≤20399	2110.0	2155.0	1950≤n≤2399
Band 5 (850)	824.0	849.0	20400≤n≤20649	869.0	894.0	2400≤n≤2649
Band 7 (2600)	2500.0	2570.0	20750≤n≤21449	2620.0	2690.0	2750≤n≤3449
			-			
Band 8 (900)	880.0	915.0	21450≤n≤21799	925.0	960.0	3450≤n≤3799
Band 9 (1700)	1749.9	1784.9	21800≤n≤22149	1844.9	1879.9	3800≤n≤4149
Band 10 (1700)	1710.0	1770.0	22150≤n≤22749	2110.0	2170.0	4150≤n≤4749
Band 11 (1500)	1427.9	1447.9	22750≤n≤22949	1475.9	1495.9	4750≤n≤4949
Band 12 (700)	699.0	716.0	23010≤n≤23179	729.0	746.0	5010≤n≤5179
Band 13 (700)	777.0	787.0	23180≤n≤23279	746.0	756.0	5180≤n≤5279
Band 14 (700)	788.0	798.0	23280≤n≤23379	758.0	768.0	5280≤n≤5379
Band 17 (700)	704.0	716.0	23730≤n≤23849	734.0	746.0	5730≤n≤5849
Band 18 (800)	815.0	830.0	23850≤n≤23999	860.0	875.0	5850≤n≤5999
Band 19 (800)	830.0	845.0	24000≤n≤24149	875.0	890.0	6000≤n≤6149
Band 20 (800)	832.0	862.0	24150≤n≤24449	791.0	821.0	6150≤n≤6449
Band 21 (1500)	1447.9	1462.9	24450≤n≤24599	1495.9	1510.9	6450≤n≤6599
Band 22 (3500)	3410.0	3490.0	24600≤n≤25399	3510.0	3590.0	6600≤n≤7399
Band 23 (2100)	2000.0	2020.0	25500≤n≤25699	2180.0	2200.0	7500≤n≤7699
Band 24 (1500)	1626.5	1660.5	25700≤n≤26039	1525.0	1559.0	7700≤n≤8039
Band 25 (1900)	1850.0	1915.0	26040≤n≤26689	1930.0	1995.0	8040≤n≤8689
Band 26 (800)	814.0	849.0	26690≤n≤27039	859.0	894.0	8690≤n≤9039
LTE - TDD	011.0	0 15.0	20030211227033	033.0	03 1.0	003021123033
Band Global			I			
Band 33 (1900)	1900.0	1920.0	36000≤n≤36199			
Band 34 (2100)	2010.0	2025.0	36200≤n≤36349			
` '						
Band 35 (1850)	1850.0	1910.0	36350≤n≤36949			
Band 36 (1930)	1930.0	1990.0	36950≤n≤37549			
Band 37 (1910)	1910.0	1930.0	37550≤n≤37749			
Band 38 (2570)	2570.0	2620.0	37750≤n≤38249			
Band 39 (1880)	1880.0	1920.0	38250≤n≤38649			
Band 40 (2300)	2300.0	2400.0	38650≤n≤39649			
Band 41 (2496)	2496.0	2690.0	39650≤n≤41589			
Band 42 (3400)	3400.0	3600.0	41590≤n≤43589			
Band 43 (3600)	3600.0	3800.0	43590≤n≤45589			
TD-SCDMA						
FBN 0	1785.0	1805.0	0≤n≤92			
FBN 1	1900.0	1920.0	0≤n≤92			
FBN 2	1920.0	1980.0	0≤n≤255			
FBN 3	1920.0	1980.0	0≤n≤36			
FBN 4	1980.0	2010.0	0≤n≤142			
FBN 5	2010.0	2025.0	0≤n≤67			
FBN 6	2100.0	2170.0	0≤n≤255			
FBN 7	2100.0	2170.0	0≤n≤36			
FBN 8	2170.0	2220.0	0≤11≤36			
WiMAX	21/0.0	2220.0	U2II2242			
ProfR1 (1.25 2150)	2150.625	2159.375	0≤n≤7			
ProfR2 (1.25 2305)	2305.625	2320.625	0≤n≤12			
ProfR3 (1.25 2361)	2361.875	2375.625	13≤n≤24			
ProfR4 (1.25 2500)	2500.625	2688.125	0≤n≤150			
ProfR5 (1.25 3400)	3400.625	3700.625	0≤n≤240			
ProfR6 (3.5 2598)	2524.750	2591.250	0≤n≤38	2598.750	2665.250	0≤n≤38
ProfR7 (3.5 3461)	3411.750	3443.250	0≤n≤18	3461.750	3493.250	0≤n≤18
ProfR8 (3.5 3551)	3501.750	3598.000	0≤n≤55	3551.750	3648.000	0≤n≤55
ProfR9 (3.5 3651)	3601.750	3698.000	0≤n≤55	3651.750	3748.000	0≤n≤55
ProfR10 (3.5 3751)	3701.750	3798.000	0≤n≤55	3751.750	3848.000	0≤n≤55
ProfR11 (7 2600)	2526.500	2589.500	0≤n≤36	2600.50	2663.50	0≤n≤36
ProfR12 (7 3463)	2413.500	3441.500	0≤n≤16	3463.50	3491.50	0≤n≤16
ProfR13 (7 3553)	3503.500	3596.250	0≤n≤53	3553.50	3646.25	0≤n≤53
	0000.000	2000.200	0211200	333.33	30.0.23	3211233

JD780A Series Analyzers

ProfR14 (7 3653)	3603.500	3696.250	0≤n≤53	3653.50	3746.25	0≤n≤53
ProfR15 (7 3753)	3703.500	3796.250	0≤n≤53	3753.50	3846.25	0≤n≤53
ProfR26 (10 5275)	5275.000	5335.000	55≤n≤67			
ProfR27 (10 5740)	5740.000	5830.000	148≤n≤166			
ProfR28 (10 5735)	5735.000	5845.000	147≤n≤169			
ProfR29 (8.75 2304)	2304.375	2395.625	0≤n≤730			

Appendix D - VSWR-Return loss conversion table

This information is for the Cable and Antenna Analyzer mode of the JD785A Base Station Analyzer and the JD786A RF Analyzer.

- Return Loss=20log₁₀(VSWR+1/VSWR-1) (dB)
- $VSWR = (10^{R.L./20} + 1/10^{R.L./20} 1)$

VSWR	Return Loss (dB)	Trans. Loss (dB)	Volt. Refl Coeff	Power Trans (%)	Power Refl (%)	VSWR	Return Loss (dB)	Trans. Loss (dB)	Volt. Refl Coeff	Power Trans (%)	Power Refl (%)
1.00		0.000	0.00	100.0	0.0	1.64	12.3	0.263	0.24	94.1	5.9
1.01	46.1	0.000	0.00	100.0	0.0	1.66	12.1	0.276	0.25	93.8	6.2
1.02	40.1	0.000	0.01	100.0	0.0	1.68	11.9	0.289	0.25	93.6	6.4
1.03	36.6	0.001	0.01	100.0	0.0	1.70	11.7	0.302	0.26	93.3	6.7
1.04	34.2	0.002	0.02	100.0	0.0	1.72	11.5	0.315	0.26	93.0	7.0
1.05	32.3	0.003	0.02	99.9	0.1	1.74	11.4	0.329	0.27	92.7	7.3
1.06	30.7	0.004	0.03	99.9	0.1	1.76	11.2	0.342	0.28	92.4	7.6
1.07	29.4	0.005	0.03	99.9	0.1	1.78	11.0	0.356	0.28	92.1	7.9
1.08	28.3	0.006	0.04	99.9	0.1	1.80	10.9	0.370	0.29	91.8	8.2
1.09	27.3	0.008	0.04	99.8	0.2	1.82	10.7	0.384	0.29	91.5	8.5
1.10	26.4	0.010	0.05	99.8	0.2	1.84	10.6	0.398	0.30	91.3	8.7
1.11	25.7	0.012	0.05	99.7	0.3	1.86	10.4	0.412	0.30	91.0	9.0
1.12	24.9	0.014	0.06	99.7	0.3	1.88	10.3	0.426	0.31	90.7	9.3
1.13	24.3	0.016	0.06	99.6	0.4	1.90	10.2	0.440	0.31	90.4	9.6
1.14	23.7	0.019	0.07	99.6	0.4	1.92	10.0	0.454	0.32	90.1	9.9
1.15	23.1	0.021	0.07	99.5	0.5	1.94	9.9	0.468	0.32	89.8	10.2
1.16	22.6	0.024	0.07	99.5	0.5	1.96	9.8	0.483	0.32	89.5	10.5
1.17	22.1	0.027	0.08	99.4	0.6	1.98	9.7	0.497	0.33	89.2	10.8
1.18	21.7	0.030	0.08	99.3	0.7	2.00	9.5	0.512	0.33	88.9	11.1
1.19	21.2	0.033	0.09	99.2	8.0	2.50	7.4	0.881	0.43	81.6	18.4
1.20	20.8	0.036	0.09	99.2	8.0	3.00	6.0	1.249	0.50	75.0	25.0
1.21	20.4	0.039	0.10	99.1	0.9	3.50	5.1	1.603	0.56	69.1	30.9
1.22	20.1	0.043	0.10	99.0	1.0	4.00	4.4	1.938	0.60	64.0	36.0
1.23	19.7	0.046	0.10	98.9	1.1	4.50	3.9	2.255	0.64	59.5	40.5
1.24	19.4	0.050	0.11	98.9	1.1	5.00	3.5	2.553	0.67	55.6	44.4
1.25	19.1	0.054	0.11	98.8	1.2	5.50	3.2	2.834	0.69	52.1	47.9
1.26	18.8	0.058	0.12	98.7	1.3	6.00	2.9	3.100	0.71	49.0	51.0
1.27	18.5	0.062	0.12	98.6	1.4	6.50	2.7	3.351	0.73	46.2	53.8
1.28	18.2	0.066	0.12	98.5	1.5	7.00	2.5	3.590	0.75	43.7	56.3
1.29	17.9	0.070	0.13	98.4	1.6	7.50	2.3	3.817	0.76	41.5	58.5
1.30	17.7	0.075	0.13	98.3	1.7	8.00	2.2	4.033	0.78	39.5	60.5
1.32	17.2	0.083	0.14	98.1	1.9	8.50	2.1	4.240	0.79	37.7	62.3
1.34	16.8	0.093	0.15	97.9	2.1	9.00	1.9	4.437	0.80	36.0	64.0
1.36	16.3	0.102	0.15	97.7	2.3	9.50	1.8	4.626	0.81	34.5	65.5
1.38	15.9	0.112	0.16	97.5	2.5	10.00	1.7	4.807	0.82	33.1	66.9
1.40	15.8	0.122	0.17	97.2	2.8	11.00	1.6	5.149	0.83	30.6	69.4
1.42	15.2	0.133	0.17	97.0	3.0	12.00	1.5	5.466	0.85	28.4	71.6
1.44	14.9	0.144	0.18	96.7	3.3	13.00	1.3	5.762	0.86	26.5	73.5
1.46	14.6	0.155	0.19	96.5	3.5	14.00	1.2	6.040	0.87	24.9	75.1
1.48	14.3	0.166	0.19	96.3	3.7	15.00	1.2	6.301	0.88	23.4	76.6
1.50	14.0	0.177	0.20	96.0	4.0	16.00	1.1	6.547	0.88	22.1	77.9
1.52	13.7	0.189	0.21	95.7	4.3	17.00	1.0	6.780	0.89	21.0	79.0
1.54	13.4	0.201	0.21	95.5	4.5	18.00	1.0	7.002	0.89	19.9	80.1
1.56	13.2	0.213	0.22	95.2	4.8	19.00	0.9	7.212	0.90	19.0	81.0
1.58	13.0	0.225	0.22	94.9	5.1	20.00	0.9	7.413	0.90	18.1	81.9
1.60	12.7	0.238	0.23	94.7	5.3	25.00	0.7	8.299	0.92	14.8	85.2
1.62	12.5	0.250	0.24	94.4	5.6	30.00	0.6	9.035	0.94	12.5	87.5

Appendix E – Cyclic prefix table

This information is for the LTE – FDD Signal Analyzer mode and the LTE – TDD Signal Analyzer mode of the JD785A Base Station Analyzer and the JD788A Signal Analyzer. Following table shows OFDM parameter details by different bandwidth.

Bandwidth	Configuration (Do	ownlink)	Cyclic Prefix Length		
Danuwium	Comiguration (De	owillink)	TS	μs	
00 MH	Normal CP	Δf=15 kHz	160 for <i>l</i> =0 144 for <i>l</i> =1,2,,6	5.208 4.6875	
20 MHz	Extended CP	Δf=15 kHz	512 for <i>l</i> =0,1,,5	16.667	
	Extended CF	Δf=7.5 kHz	1024 for l=0,1,2	33.333	
45.00	Normal CP	Δf=15 kHz	120 for <i>l</i> =0 108 for <i>l</i> =1,2,,6	5.208 4.6875	
15 MHz	Extended CP	Δf=15 kHz	384 for <i>l</i> =0,1,,5	16.667	
	Extended CP	Δf=7.5 kHz	768 for <i>l</i> =0,1,2	33.333	
	Normal CP	Δf=15 kHz	80 for l=0 72 for l=1,2,,6	5.208 4.6875	
10 MHz	Extended CP	Δf=15 kHz	256 for <i>l</i> =0,1,,5	16.667	
		Δf=7.5 kHz	512 for <i>l</i> =0,1,2	33.333	
	Normal CP	Δf=15 kHz	40 for $l = 0$ 36 for $l = 1, 2,, 6$	5.208 4.6875	
5 MHz	Extended CP	Δf=15 kHz	128 for <i>l</i> =0,1,,5	16.667	
	Extended CP	Δf=7.5 kHz	248 for <i>l</i> =0,1,2	33.333	
0.1411-	Normal CP	Δf=15 kHz	20 for l=0 18 for l=1,2,,6	5.208 4.6875	
3 MHz	Extended CP	Δf=15 kHz	64 for <i>l</i> =0,1,,5	16.667	
	Extended Cr	Δf=7.5 kHz	128 for <i>l</i> =0,1,2	33.333	
	Normal CP	Δf=15 kHz	10 for <i>l</i> =0 9 for <i>l</i> =1,2,,6	5.208 4.6875	
1.4 MHz	Extended CP	Δf=15 kHz	32 for <i>l</i> =0,1,,5	16.667	
	Extended CP	Δf=7.5 kHz	64 for <i>l</i> =0,1,2	33.333	

Appendix F - Motorola CDMA/EV-DO LMF

Motorola's CDMA/EV-DO base stations (BTS) are optimized with the assistance of Local Maintenance Facility (LMF), a Motorola's software tool that interfaces with the cell site and the instrument. The optimization process identifies the accumulated loss (or gain) for all receiving and transmitting paths at the cell site and stores that value in the system's database.

Using JD780A series LMF interface

An emulation interface to LMF has been implemented in Viavi's base station analyzer (JD785A) in order to perform BTS optimization procedures. The scope of this emulation is to do maintenance tests of TX Calibration and TX Audit required in routine maintenance practices with or without the use of an external power sensor. Using the external power sensor, you can get highly accurate measurement results.

Setting up for a LMF test

Procedure

- 1. To connect your instrument both with BTS and PC, do one of the following:
 - Internal power sensor: Connect the Motorola CDMA/EV-DO BTS with the Spectrum Analyzer RF In 50 Ω port of JD785A and connect the WinLMF running PC with JD785A via a hub as illustrated in the Figure 346.
 - External power sensor: Connect an external power sensor to the USB Host port of JD785A and to the BTS and connect the WinLMF running PC with JD785A via a hub as illustrated in the Figure 347.

Figure 346 Using internal power sensor

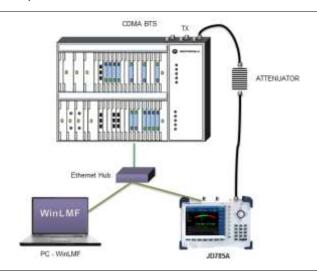
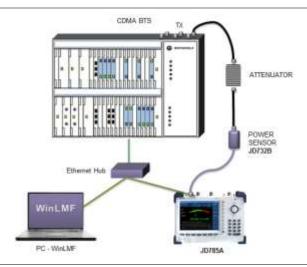



Figure 347 Using external power sensor

Performing a LMF test

Procedure

- 1. Press the SYSTEM hot key.
- 2. To set the IP address, complete the following steps:
 - a. Select System Configuration > Ethernet Config > IPv4.
 - b. Toggle the Mode soft key and select Static.
 - c. Press the Field > IP Address soft key.
 - d. Set the IP address as "192.167.10.1".
- 3. Select Remote Interface > LAN > LMF.
- 4. To set up the LMF settings, complete the following steps:
 - a. Press the LMF Settings soft key.
 - **b.** Select the power measurement and BTS option from the following choices:
 - External PM 800 MHz Band for external measurement on cellular basestation
 - External PM 1900 MHz Band for external meausrement on PCS basestation
 - Internal PM 800 MHz Band for internal measurement on celluar basestation
 - Internal PM 1900 MHz Band for internal measurement on PCS basestation
- **5.** To select the measurement mode, complete the following steps:
 - a. Press the MODE hard key.
 - b. Press the Power Meter soft key.
 - **c.** Select **Internal RF Power Meter** or **External RF Power Meter** depending on your LMF settings. The measurement result is displayed on the screen.

Appendix G – Bluetooth connection

JD780A series' Bluetooth mode is used for communication between the instrument and your computer with JDRemote or a storage device in order to use the following services if needed.

- Bluetooth Personal Area Network (PAN) profile service for JDRemote.
- Bluetooth File Transfer Profile (FTP) or Object Push Profile (OPP) service for file transfer from the instrument to a Bluetooth storage device.

The Bluetooth Connectivity option includes a pair of Bluetooth USB Parani-UD100 Adapters and 5 dBi Dipole Antennas as well as the BlueSoleil application software.

Installing and setting up Bluetooth software

The BlueSoleil application must be installed in your computer prior to making a Bluetooth connection. After installing the software, you must disable DHCP Server option in order to use the PAN service properly.

Procedure

Insert the provided CD-ROM into your computer and install the software as instructed. The BlueSoleil Space shortcut icon appears on the desktop.

For more information on installation, refer to the Quick Start Guide or the User Guide provided with the adapter.

- 2. Double-click the BlueSoleil Space shortcut icon on your computer desktop to launch the application.
 - The BlueSoleil program window appears.
- 3. Right-click the My Device icon (the orange ball) in the center of the window, and then click Properties > Services tab.
 - The My Device Properties window appears.
- 4. Select the Bluetooth Personal Area Network from the list, and then click the Properties
 - The Bluetooth Personal Area Network Properties window appears.
- 5. Click the Options tab, and then uncheck the Enable DHCP Server option.

NOTE

As the Enable DHCP Server option is checked by default, you must disable this option.

- Click the **OK** button.
 - The Bluetooth Personal Area Network Properties window dismisses.
- 7. Click the OK button.
 - The My Device Properties window dismisses.

Making Bluetooth connection

The JD780A series detects a connected Parani-UD100 USB Bluetooth Adapter automatically.

Procedure

Connect the 5 dBi Dipole Antenna to the Parani-UD100 Bluetooth USB Adapter: one for the computer and the other for JD780A series.

- 2. Plug in the Bluetooth adapters to the USB port of the computer and the instrument. The instrument detects the connected adapter and turns the Bluetooth mode on automatically. The Bluetooth icon appears in the status bar at the top of the instrument screen.
- Double-click the BlueSoleil Space icon on the computer desktop to launch the application if not opened already.
 - The BlueSoleil program window appears.
- Double-click the My Device icon (orange ball) in the center of the application window to search the JD780A series.
 - You can view an added icon around the orange ball labeled with the detected JD780A series' BD address or model and serial numbers.
- Right-click the device icon for the JD780A series, and then click the Pair. The Bluetooth Passkey window appears.
- **6.** Enter **0000** in the Passkey box, and then click the **OK** button. The word "Paired" appears on the window. The instrument also turns the Bluetooth Mode on automatically and displays the paired device and service information on the screen.
- Double-click the device icon for the JD780A series to search services.
- 8. Right-click the icon for the JD780A series, and then select either the Connect Bluetooth Personal Area Network or the Connect Bluetooth File Transfer.

Select one of these services as needed. If the Connect Bluetooth Personal Area Network is selected, a fixed IP address (192.168.10.10) is assigned for JD780A series and this address must be typed into the TCP/IP setting on JDViewer or JDRemote. See "Setting up communication in application" on page 636 for more information.

Setting up communication in application

If the Connect Bluetooth Personal Area Network service is selected on BlueSoleil, you need to configure communication setting on the application JDViewer or JDRemote by entering the fixed IP address for the instrument.

JDViewer setup

Procedure

- 1. Launch the JDViewer application.
- Go to Settings > Communication. The Settings dialog box appears.
- Click the drop-down list in the Instrument pane, and then select the instrument series to be communicated.
- 4. In the Connection Method pane, select the TCP/IP, and then enter 192.168.10.10 without dots.
- 5. Click **OK** to finish the communication setup.
- **6.** Go to **Load > Connect** to make a connection between the instrument and JDViewer. JD780A series and JDViewer become ready for communication.

JDRemote setup

Procedure

- Launch the JDRemote application.
 The Select Model dialog box appears.
- 2. Select the **740A/B**, **780A/B Series**, and then click the **OK** button.

- Right-click on the JDRemote window, and then click the Communication. The Communication dialog box appears.
- 4. Select the TCP/IP, and then enter 192.168.10.10 without dots.
- 5. Click **OK** to finish the communication setup.
- **6.** Right-click on the JDRemote window, and then click the **Connect**. This enables communication between the instrument and JDRemote.
- Right-click on the JDRemote window, and then click the Start. JD780A series and JDRemote become ready for communication.
- 8. Optional. To adjust the image quality, complete the following steps:
 - a. Right-click on the JDRemote.
 - b. Click the Quality.
 - c. Select the image quality option among High, Medium, or Low. You can improve refresh rate, if experiencing low-quality signal, by adjusting the image quality in JDRemote.

Turning Bluetooth mode on/off manually

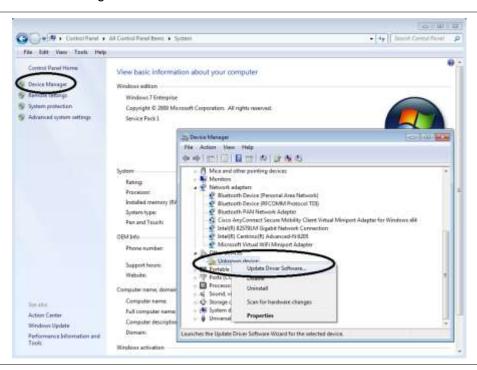
JD780A series turns the Bluetooth Mode on automatically if connected. You can also turn it on and off manually.

Procedure

- 1. Press the SYSTEM hot key.
- Press the System Configuration > Remote Interface > Bluetooth soft key.
 The Bluetooth screen appears with the device information.
- Toggle the Bluetooth soft key between On and Off to turn it on and off.
 Connecting or disconnecting the adapter also turns the mode on or off automatically.

Appendix H – Device driver installation

JD780A series can be controlled from the application software JDViewer or JDRemote installed on your computer. You must install driver software for the instrument on to the computer if USB Client connection is used for communication.


Procedure

- Go to Control Panel > System > Device Manager. The Device Manager window appears.
- Right-click the Unknown Device under the Other Devices, and then click the Update Driver Software.

The Update Driver Software – Unknown Device window appears as shown in the **Figure 348** below.

- Select the Browse my computer for driver software, and then click the Browse button to search for the location where the driver software is.
 The Browse For Folder window appears.
- Search for the JDRemote folder, and then select the driver folder for the installed OS. For example, OSDisk (C:) > Program Files (x86) > JDRemote > Driver > Win7 > 64bit.
- Click the **OK** button. The Browse For Folder window dismisses.
- Click the Next button to start installation.
 If the Windows Security window appears, select the Install this driver software anyway.
 Installing driver software starts.
- 7. Click the Close button at the end of the installation.

Figure 348 Device manager screen

Appendix I - Ordering information

The Warranty Period for Viavi Solutions Accessories shall apply to the all standard and optional accessories listed below. The warranty period varies by product and is generally one (1) year unless otherwise specified.

JD785A Base Station Analyzer

JD785A

9 kHz to 8 GHz Spectrum Analyzer

5 MHz to 6 GHz Cable and Antenna Analyzer¹

10 MHz to 8 GHz RF Power Meter Internal mode

Options

NOTE: Upgrade options for the JD785A use the designation JD785AU before the respective last three-digit option number.

JD785A001	2-Port Transmission Measurements ²	
JD785A002	Bias Tee	(Requires option 01)
JD785A003	CW Signal Generator	
JD785A004	E1 Analyzer ³	
JD785A005	T1 Analyzer ³	
JD785A006	Bluetooth Connectivity	
JD785A007	High Power CW Signal Generator	
JD785A010	GPS Receiver and Antenna	
JD785A011	Interference Analyzer ^{4, 5}	
JD785A012	Channel Scanner	
JD785A014	LTE-FDD RAN Performance Indicator	
JD785A015	LTE-TDD RAN Performance Indicator	
JD785A016	Wi-Fi Connectivity	
JD785A020	cdmaOne/cdma2000 Signal Analyzer	
JD785A021	EV-DO Signal Analyzer	(Requires option 20)
JD785A022	GSM/GPRS/EDGE Signal Analyzer	
JD785A023	WCDMA/HSPA+ Signal Analyzer	
JD785A025	TD-SCDMA Signal Analyzer	
JD785A026	Mobile WiMAX Signal Analyzer	
JD785A028	LTE-FDD Signal Analyzer	
JD785A029	LTE-TDD Signal Analyzer	
JD785A030	LTE Advanced-FDD Signal Analyzer	(Requires option 28)
JD785A031	LTE Advanced-TDD Signal Analyzer	(Requires option 29)
JD785A032	LTE-FDD 256 QAM Demodulator	(Requires option 28)
JD785A033	LTE-TDD 256 QAM Demodulator	(Requires option 29)
JD785A040	cdmaOne/cdma2000 OTA Analyzer ⁵	(Requires option 10)
JD785A041	EV-DO OTA Analyzer ⁵	(Requires option 10)
JD785A042	GSM/GPRS/EDGE OTA Analyzer ⁵	(Requires option 10)
JD785A043	WCDMA/HSPA+ OTA Analyzer ⁵	(Requires option 10)
JD785A045	TD-SCDMA OTA Analyzer ⁵	(Requires option 10)
JD785A046	Mobile WiMAX OTA Analyzer⁵	(Requires option 10)
JD785A048	LTE-FDD OTA Analyzer ⁵	(Requires option 10)
JD785A049	LTE-TDD OTA Analyzer ⁵	(Requires option 10)
JD785A050	EMF Analyzer ⁷	

Standard Accessories

G710550326	AC/DC Power Adapter ⁶
G710550335	Cross LAN Cable (1.5 m) ⁶
GC73050515	USB A to B Cable (1.8 m) ⁶
GC72450518	> 1 G Byte USB Memory ⁶

JD780A Series Analyzers

G710550325 Rechargeable Lithium Ion Battery⁶
G710550323 Automotive Cigarette Lighter 12 V DC Adapter⁶
G710550316 Stylus Pen⁶
JD780A361 JD780A Series User's Manual and Application Software – CD

¹Requires Calibration Kit ²Requires Dual Port Calibration Kit ³Requires Test Cable ⁴Highly recommended adding JD785A010 ⁵Highly recommended adding G70005035x and/or G70005036x ⁶Standard accessories can be purchased separately. ⁷Requires G700050380

JD786A RF Analyzer

JD786A

9 kHz to 8 GHz Spectrum Analyzer

5 MHz to 6 GHz Cable and Antenna Analyzer¹

10 MHz to 8 GHz RF Power Meter Internal mode

Options

NOTE: Upgrade options for the JD786A use the designation JD786AU before the respective last three-digit option number.

JD786A001 2-Port Transmission Measurements²
JD786A002 Bias Tee (Requires option 01)
JD786A003 CW Signal Generator
JD785A006 Bluetooth Connectivity
JD786A007 High Power CW Signal Generator
JD786A010 GPS Receiver and Antenna
JD786A011 Interference Analyzer^{3,4}
ID786A012 Channel Scanner

JD786A011 Interference Analyz JD786A012 Channel Scanner JD786A016 Wi-Fi Connectivity JD786A050 EMF Analyzer⁶

Standard Accessories

G710550326	AC/DC Power Adapter ⁵
G710550335	Cross LAN Cable (1.5 m) ⁵
GC73050515	USB A to B Cable (1.8 m) ⁵
GC72450518	> 1 G Byte USB Memory ⁵
G710550325	Rechargeable Lithium Ion Battery ⁵
G710550323	Automotive Cigarette Lighter 12 V DC Adapter ⁵
G710550316	Stylus Pen ⁵
JD780A361	JD780A Series User's Manual and Application Software – CD

¹Requires Calibration Kit ²Requires Dual port Calibration Kit ³Highly recommended adding JD786A010 ⁴Highly recommended adding G70005035x and/or G70005036x ⁵Standard accessories can be purchased separately. ⁶Requires G700050380

JD788A Signal Analyzer

JD788A

9 kHz to 8 GHz Spectrum Analyzer

10 MHz to 8 GHz RF Power Meter Internal mode

Options

NOTE: Upgrade options for the JD788A use the designation JD788AU before the respective last three-digit option number.

JD785A001	2-Port Transmission Measurements ¹	
JD785A003	CW Signal Generator	
JD788A006	Bluetooth Connectivity	
JD788A007	High Power CW Signal Generator	
JD788A009	20 MHz Demodulation Hardware	
JD788A010	GPS Receiver and Antenna	
JD788A011	Interference Analyzer ^{2,3}	
JD788A012	Channel Scanner	
JD788A014	LTE-FDD RAN Performance Indicator	
JD788A015	LTE-TDD RAN Performance Indicator	
JD788A016	Wi-Fi Connectivity	
JD788A020	cdmaOne/cdma2000 Signal Analyzer	(Requires option 9)
JD788A021	EV-DO Signal Analyzer	(Requires option 9 and 20)
JD788A022	GSM/GPRS/EDGE Signal Analyzer	(Requires option 9)
JD788A023	WCDMA/HSPA+ Signal Analyzer	(Requires option 9)
JD788A025	TD-SCDMA Signal Analyzer	(Requires option9)
JD788A026	Mobile WiMAX Signal Analyzer	(Requires option 9)
JD788A028	LTE-FDD Signal Analyzer	(Requires option 9)
JD788A029	LTE-TDD Signal Analyzer	(Requires option 9)
JD788A030	LTE Advanced-FDD Signal Analyzer	(Requires options 9 and 28)
JD788A031	LTE Advanced-TDD Signal Analyzer	(Requires options 9 and 29)
JD788A032	LTE-FDD 256 QAM Demodulator	(Requires options 9 and 28)
JD788A033	LTE-TDD 256 QAM Demodulator	(Requires options 9 and 29)
JD788A040	cdmaOne/cdma2000 OTA Analyzer³	(Requires options 9 and 10)
JD788A041	EV-DO OTA Analyzer ³	(Requires options 9 and 10)
JD788A042	GSM/GPRS/EDGE OTA Analyzer ³	(Requires options 9 and 10)
JD788A043	WCDMA/HSPA+ OTA Analyzer ³	(Requires options 9 and 10)
JD788A045	TD-SCDMA OTA Analyzer ³	(Requires options 9 and 10)
JD788A046	Mobile WiMAX OTA Analyzer ³	(Requires options 9 and 10)
JD788A048	LTE-FDD OTA Analyzer ³	(Requires options 9 and 10)
JD788A049	LTE-TDD OTA Analyzer ³	(Requires options 9 and 10)
JD788A050	EMF Analyzer⁵	

Standard Accessories

G710550326	AC/DC Power Adapter ⁴
G710550335	Cross LAN Cable (1.5 m) ⁴
GC73050515	USB A to B Cable (1.8 m) ⁴
GC72450518	> 1 G Byte USB Memory ⁴
G710550325	Rechargeable Lithium Ion Battery ⁴
G710550323	Automotive Cigarette Lighter 12 V DC Adapter ⁴
G710550316	Stylus Pen⁴
JD780A361	JD780A Series User's Manual and Application Software – CD

 1 Requires Dual Port Calibration Kit 2 Highly recommended adding JD788A010 3 Highly recommended adding G70005035x and/or G70005036x 4 Standard accessories can be purchased separately. 5 Requires G700050380

JD780A Series Common Options

Optional RF Power Sensors		
JD731B	Directional Power Sensor. Peak and Average power 300 to 3800 MHz	
JD733A	Directional Power Sensor. Peak and Average power 150 to 3500 MHz	
JD732B	Terminating Power Sensor. Average Power 20 to 3800 MHz	
JD734B	Terminating power sensor, Peak Power 20 to 3800 MHz	
JD736B	Terminating power sensor, Dual (Average/Peak) power 20 to 3800 MHz	

Optional Optical Power Sensors	
MP-60A	USB Optical Power Meter, with software, 2.5 mm and 1.25 mm interfaces,
	30" USB extender, carrying pouch
MP-80A	USB Optical Power Meter-High Power, with software, 2.5 mm and 1.25 mm interfaces, 30" USB extender, carrying pouch

Optional Calibration Kits	
JD78050509	Y- Calibration Kit Type-N(m), DC to 6 GHz, 50 Ω
JD78050507	Dual Port Type-N 6 GHz Calibration Kit
JD70050509	EZ-CAL Kit Type-N(m), DC to 6 GHz, 50 Ω

Optional Fiber Microscope Kits	
FBP-SD101	FBP-P5000i Digital Probe, FiberChekPRO SW, Case, and 4 Tips
FBP-MTS-101	FBP-P5000i Digital Probe, FiberChekPRO SW, Case, and 7 Tips
FIT-SD103	FBP-P5000i Digital Probe, MP-60A USB Power Meter, FiberChekPRO SW, Case, Tips and Adapters
FIT-SD103-C	FBP-P5000i Digital Probe, MP-60A USB Power Meter, FiberChekPRO SW, Case, Tips and Adapters
FIT-SD113	FBP-P5000i Digital Probe, MP-80A USB Power Meter, FiberChekPRO SW, Case, Tips and Adapters

Optional RF Cables	
G710050530	1.0 m (3.28 ft) RF Cable, DC to 18 GHz, Type-N(m) to Type-N(m), 50 Ω
G710050531	1.5 m (4.92 ft) RF Cable, DC to 18 GHz, Type-N(m) to Type-N(f), 50 Ω
G710050532	3.0 m (9.84 ft) RF Cable, DC to 18 GHz, Type-N(m) to Type-N(f), 50 Ω
G710050533	1.5 m (4.92 ft) RF Cable, DC to 18 GHz, Type-N(m) to SMA(m), 50 Ω
G710050534	1.5 m (4.92 ft) RF Cable, DC to 18 GHz, Type-N(m) to QMA(m), 50 Ω
G710050535	1.5 m (4.92 ft) RF Cable, DC to 18 GHz, Type-N(m) to SMB(m), 50 Ω
G710050536	RF Cable DC to 6 GHz Type-N(m) to DIN(f), 1.5 m
G710050537	RF Cable DC to 4 GHz Type-N(m) to 1.0/2.3 (m), 1.5 m
G700050540	Phase-Stable RF Cable w Grip DC to 6 GHz Type-N(m) to Type-N(f), 1.5 m
G700050541	Phase-Stable RF Cable w Grip DC to 6 GHz Type-N(m) to DIN(f), 1.5 m

Optional Antennas	
G700050353	RF Omni Antenna Type-N(m), 806 MHz to 896 MHz
G700050354	RF Omni Antenna Type-N(m), 870 MHz to 960 MHz
G700050355	RF Omni Antenna Type-N(m), 1.71 GHz to 2.17 GHz
G700050356	RF Omni Antenna Type-N(m), 720 MHz to 800 MHz
G700050357	RF Omni Antenna Type-N(m), 2.3 GHz to 2.7 GHz
G700050364	RF Yagi Antenna Type-N(f), 806 MHz to 896 MHz, 10.2 dBd
G700050365	RF Yagi Antenna Type-N(f), 866 MHz to 960 MHz, 10.2 dBd
G700050363	RF Yagi Antenna Type-N(f), 1.75 GHz to 2.39 GHz, 9.8 dBd
G700050366	RF Log-Periodic Antenna SMA(f), 700 MHz to 4 GHz, 1.85 dBd
G700050367	RF Log-periodic Antenna SMA(f), 700 MHz to 6 GHz, 2.85 dBd

G700050380 Isotropic Antenna Type-N(m), 70 MHz to 3 GHz

Optional RF Adapte	rs
G700050571	Adapter Type-N(m) to DIN(f), DC to 7.5 GHz, 50 W
G700050572	Adapter DIN(m) to DIN(m), DC to 7.5 GHz, 50 W
G700050573	Adapter Type-N(m) to SMA(f) DC to 18 GHz, 50 W
G700050574	Adapter Type-N(m) to BNC(f), DC to 4 GHz, 50 W
G700050575	Adapter Type-N(f) to Type-N(f), DC to 18 GHz 50 W
G700050576	Adapter Type-N(m) to DIN(m), DC to 7.5 GHz, 50 W
G700050577	Adapter Type-N(f) to DIN(f), DC to 7.5 GHz, 50 W
G700050578	Adapter Type-N(f) to DIN(m), DC to 7.5 GHz, 50 W
G700050579	Adapter DIN(f) to DIN(f), DC to 7.5 GHz, 50 W
G700050580	Adapter Type-N(m) to Type-N(m), DC to 11 GHz 50 W
G700050581	Adapter N(m) to QMA(f), DC to 6.0 GHz, 50 W
G700050582	Adapter N(m) to QMA(m), DC to 6.0 GHz, 50 W
G700050583	Adapter N(m) to 4.1/9.5 MINI DIN (f), DC to 6.0 GHz, 50 Ω
G700050584	Adapter N(m) to 4.1/9.5 MINI DIN (m), DC to 6.0 GHz, 50 Ω
G700050585	Adapter N(m) to 4.3-10 (f), DC to 6.0 GHz, 50 ohm
G700050586	Adapter N(m) to 4.3-10 (m), DC to 6.0 GHz, 50 ohm

Optional E1/T1 Test Cables

G710050317	RJ45 to Y Bantam Cable
G710050318	RJ45 to Y BNC Cable
G710050319	RJ45 to 4 Alligator Clips

StrataSync Subscription	
SS-CA-BSA-AM-01	StrataSync for CellAdvisor BSA - Asset Management-1 Yr.
SS-CA-BSA-TDM-01	StrataSync for CellAdvisor BSA - Test Data Management-1 Yr.
SS-CA-RFA-AM-01	StrataSync for CellAdvisor RFA - Asset Management-1 Yr.
SS-CA-RFA-TDM-01	StrataSync for CellAdvisor RFA - Test Data Management-1 Yr.
SS-CA-SA-AM-01	StrataSync for CellAdvisor SA - Asset Management-1 Yr.
SS-CA-SA-TDM-01	StrataSync for CellAdvisor SA - Test Data Management-1 Yr.

Optional Miscellaneous

G710050581	Attenuator 40 dB, 100 W, DC to 4 GHz (Unidirectional)
JD74050341	Soft Carrying Case
JD71050342	Hard Carrying Case
JD70050342	Hard Carrying Case with wheels
JD70050343	CellAdvisor Backpack Carrying Case
JD70050006	USB Bluetooth Dongle and 5 dBi Dipole Antenna
G710050585	RF Directional Coupler, 700 MHz to 4 GHz, 30 dB, Input/Output;
	Type-N(m) to Type-N(f), Tap Off; Type-N(f) ¹
G710050586	RF Combiner, 700 MHz to 4 GHz, Type-N(f) to Type-N(m) ¹
G710050587	4x1 RF Combiner, 700 MHz to 4 GHz, Type-N(f) to Type-N(m) ²
G700050601	Bandpass filter 696 MHz to 716 MHz, N(m) to N(f), 50 ohm
G700050602	Bandpass filter 776 MHz to 788 MHz, N(m) to N(f), 50 ohm
G700050603	Bandpass filter 806 MHz to 849 MHz, N(m) to N(f), 50 ohm
G700050604	Bandpass filter 1710 MHz to 1755 MHz, N(m) to N(f), 50 ohm
G700050605	Bandpass filter 1850 MHz to 1910 MHz, N(m) to N(f), 50 ohm
JD70050007	AntennaAdvisor Handle ³
JD71050351	GPS Antenna for JD740 and JD780 Series
G710550324	External Battery Charger
JD780A362	JD780A Series User's Manual – Printed Version

 $^{1}\mbox{Highly recommended for LTE Testing}$ $^{2}\mbox{Highly recommended for LTE Advanced Testing}$ 3 Requires G700050366 or G700050367 RF Log-Periodic Antenna

Appendix J - RoHS information

This appendix describes the RoHS (Restriction of Hazardous Substances) information, which is a mandatory requirement from China. The RoHS directive consists in the restriction on the use of certain hazardous substances in electrical or electronic equipment sold or used in the European Union, after July 1, 2006. These substances are: lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls, and polybrominated diphenyl ethers.

Concerned Products: JD785A, JD786A, JD788A

"中国 RoHS" 《电子信息产品污染控制管理办法》(信息产业部,第 39 号)

附录 (Additional Information required for the Chinese Market only)

本附录按照"中国 RoHS"的要求说明了有关电子信息产品环保使用期限的情况,并列出了产品中含有的有毒、有害物质的种类和所在部件。本附录适用于产品主体和所有配件。

<u>产品系列: JD780A</u>

(Product Family)

环保使用期限:

本标识标注于产品主体之上,表明该产品或其配件含有有毒、有害物质(详情见下表)。 其中的数字代表在正常操作条件下至少在产品生产日期之后数年内该产品或其配件内含有的有毒、有害物质不会变异或泄漏。该期限不适用于诸如电池等易耗品。

有关正常操作条件,请参见产品用户手册。

产品生产日期请参见产品的原始校准证书。

有毒、有害物质的类型和所在部件

	<u>有毒、有害物质和元素</u>							
元器件 (Component)	铅(Pb)	汞 (Hg)	镉(Cd)	六价铬(CR ^{≥+})	多溴联苯(PBB)	多溴二苯醛 (PBDE)		
产品主体 (Main Product)								
印刷电路板组件 (PCB Assemblies) 内部配线	X	0	0	0	0	0		
内部配线 (Internal wiring) 显示器	0	0	0	0	0	0		
显示器 (Display) 键盘	0	0	0	0	0	0		
(Keypad)	0	0	0	0	0	0		
电池 (Batterfes) 电工零件	0	0	0	0	0	0		
	0	0	0	0	0	0		
(Electro-mechanical parts) 金属外壳零件和紧扣件 (Metal case parts and fixings)	0	0	0	0	0	0		
(Metal case parts and fixings) 塑料外壳零件 (Plastic case parts) 标签和胶带	0	0	0	0	0	0		
(Labels and tapes)	0	0	0	0	0	0		
配件 (Accessories)								
外接电缆和通配器 (External cables and adapters)	X	0	0	0	Х	Х		
USB 记忆 (USB Memory)	x	0	0	0	0	0		
手册和其它印刷材料 (Handbooks and other printed material)	0	0	0	0	0	0		
包裝箱和縛帶	0	0	0	0	0	0		
(Carrying case and strap) 其它配件 (Other accessories)	X	0	0	0	Х	Х		
AC/DC 电源透配器 (AC/DC Power Adapters)	0	0	0	0	0	0		

- O:代表该部分中所有均质材料含有的该有毒、有害物质含量低于 SJ/T11363-2006 标准的限值。
- X: 代表该部分中所有均质材料含有的该有毒、有害物质含量高于 SJ/T11363-2006 标准的限值。

Appendix K - On-screen keyboard

You can use the on-screen keyboard to type in texts, file names, and folder names.

Adding or deleting letters

Procedure

- Tap keys on the on-screen keyboard. As you type, each letter is displayed in the name field. If
 you want to change the letter case between uppercase and lowercase, tap the Caps key.
- 2. To delete a letter, tap the Back key on the keyboard or press the backspace key on the keypad.
- 3. To move the cursor along the name field, tap the < or > key, turn the rotary knob, or touch in between letters in the name field.
- To delete all the letters displayed in the name field, tap the Clear key on the on-screen keyboard.

Figure 349 On-screen keyboard

Editing or adding a custom keyword

You can edit and delete a keyword or add a new one, as you desire.

Procedure

- Tap the Edit Keywords bar on the on-screen keyboard. The edit keywords keyboard appears.
- 2. To edit a keyword, select the keyword box and then change the letters.
- 3. To delete a keyword, select the keyword box and then tap the Clear key.
- 4. To add a keyword, select a blank keyword box and then type in a keyword.
- 5. Tap the **Save** key on the keyboard to save and continue saving.

Figure 350 Edit keywords keyboard

Appending a keyword

You can append a factory-stored or custom-defined keyword, as you want.

Procedure

- Tap the Append Keywords bar on the on-screen keyboard. The append keywords window appears.
- 2. To append a keyword, complete the following steps:
 - a. Select the keyword tag button to view available keywords for the tag.
 - **b.** Select one keyword, from the following choices for each keyword tag:

Keyword tag	Keyword (tag value)
Site-ID*	SiteA, SiteB, and SiteC
Sector*	Alpha, Beta, and Gamma
Technology*	GSM900, WCDMA850, and LTE180
Test Type*	RL, VSWR, DTF-RL, DTF-VSWR, and CL
Termination*	Open, Load, and Antenna
Custom	Any keywords you have added

- $\textbf{c.} \quad \text{To delete the keyword you have added to the keyword field, tap the } \textbf{Delete} \text{ button.}$
- d. To clear the keyword field, tap the Clear button.
- Optional. You can edit any of the custom keyword tags or tag values by tapping the Edit Tags Values or Edit Tags button, but not the factory keyword tags marked with the asterisk (*).

You must keep the keywords marked with the asterisk (*) intact as the StrataSync server uses them when transferring data.

- 4. Select the **Separator** option from the choices: hyphen [-], underscore [_], or **None**.
- 5. Select the **As a filename** option between **On** and **Off**. If you select **Off**, the keyword will not be placed in a file name, but in the trace/PNG file information.
- 6. Tap the Save and Exit button to save and exit or the Keyboard button to return to the

keyboard.

Figure 351 Append keywords window

Appendix L – Supported map display parameters

Your CellAdvisor instrument provides the RAN Performance Indicator feature in the LTE signal analyzer mode. Setting map display parameters that your instrument supports is important to have test results as you desire as the instrument supports RANAdvisor's map display parameters with limitations. Following table will help you select parameters properly by showing what are supported.

Parameter Category	Parameter Name	Support ?	Parameter Category	Parameter Name	Support ?
LTE Cell	Cell Name		LTE	N1 RSRP Rx(1) (dBm)	
Info	Cell Identity		Serving	N1 RSRP (dBm)	
Parameters	Physical Cell ID Tracking Area Code		and	N1 RSRQ (dB)	
			Neighbor Parameters	N2 PCI	
	MCC			N2 RSRP Rx(0) (dBm)	
	MNC		(continued)	N2 RSRP Rx(1) (dBm)	
	DL E-ARFCN			N2 RSRP (dBm)	
	UL E-ARFCN			N2 RSRQ (dB)	
	DL Bandwidth			N3 PCI	
	UL Bandwidth			N3 RSRP Rx(0) (dBm)	
	Band Indicator			N3 RSRP Rx(1) (dBm)	
	Allowed Access			N3 RSRP (dBm)	
	RLC Tx Throughput	YES		N3 RSRQ (dB)	
	RLC Rx Throughput	YES		N4 PCI	
	MAC Tx Throughput	YES		N4 RSRP Rx(0) (dBm)	
	MAX Rx Throughput	YES		N4 RSRP Rx(1) (dBm)	
	LTE Mode			N4 RSRP (dBm)	
	LTE TDD SF Assignment			N4 RSRQ (dB)	
	LTE TDD Special SF Patterns			N5 PCI	
	CQI CW0	YES		N5 RSRP Rx(0) (dBm)	
	CQI CW1	YES		N5 RSRP Rx(1) (dBm)	
LTE ML1	RSSI RX (0) (dBm)	YES		N5 RSRP (dBm)	
Serving Cell	RSSI RX (1) (dBm)	YES		N5 RSRQ (dB)	
Measurement	RSSI (dBm)	YES		N6 PCI	
	RSRP Rx(0) (dBm)	YES		N6 RSRP Rx(0) (dBm)	
	RSRP Rx(0) (dBm)	YES		N6 RSRP Rx(1) (dBm)	
	RSRP (dBm)	YES		N6 RSRP (dBm)	
	RSRQ Rx(0) (dBm)	YES	LTE Demod	PDSCH RNTI ID	
	RSRQ RX(1) (dBm)	YES	Config	PDSCH RNTI Type	
	RSRQ (dB)	YES	Parameters	eNodeB Tx Antennas	
	SINR Rx(0) (dB)	YES		eNodeB Rx Antennas	
	SINR Rx(1) (dB)	YES		Transmission Mode	
	PUSCH Tx (dBm)	YES		Spatial Rank	
	PUCCH Tx (dBm)	YES		RB Alloc for Slot 0 (%)	
	SRS Tx (dBm)	YES		RB Alloc for Slot 1 (%)	
LTE	Serving E-ARFCN	YES		Freg Selective PMI	
Serving and Neighbor Parameters	Serving Physical Cell-ID	YES		PMI Index	
	Serving RSRP (dBm)	YES		Stream 0 TBS (bits)	
	Serving RSRQ (dB)	YES		Stream 0 Modulation	YES
	Detected Cells PCI			Traffic to Pilot Block Ratio	
	Neighbor Cell Count			Stream 1 TBS (bits)	
	N1 PCI			Stream 1 Modulation	
	N1 RSRP Rx(0) (dBm)			РВ	
	(5) (5)				

Document No. 22107926 Rev. 13.0, November 2017 English

Viavi Solutions

North America: 1.844.GO VIAVI / 1.844.468.4284

Latin America: +52 55 5543 6644

EMEA: +49 7121 862273

APAC: +1 512 201 6534

All Other Regions: viavisolutions.com/contacts